
MultiLingual Information Society

ELAN
Deliverables

WP3

DECEMBER 1999

The ELAN Architecture . 7
1 Introduction . 9

1.1 Scope . 9
1.2 User in mind . 9
1.3 Objectives . 9

2 General network organisation . 11
2.1 A decentralized network - rationale . 11
2.2 A user interface - friendly . 11
2.3 And the users . 12

3 User client (Deliverable 3.1.1) . 13
3.1 Introduction . 13
3.2 ELAN main services . 13

3.2.1 Connection to a local server . 13
3.2.2 User identification . 14
3.2.3 User registration . 14
3.2.4 Client environment and interface . 14

3.3 Technical requirements and implementation . 17
3.3.1 XML for data and message encoding . 17
3.3.2 Software requirements . 20

3.4 Statistical tests . 21
3.4.1 Introduction and trade-offs . 21
3.4.2 From the client side . 22
3.4.3 From the local server side . 22
3.4.4 From the remote server side . 22
3.4.5 The protocol retained within ELAN . 22
3.4.6 Implementation . 23

4 Organisation on the ELAN network (Deliverable 3.2.1) . 24
4.1 Organisation . 24
4.2 Clients, Servers and NMU communication . 25

4.2.1 Servlets . 25
4.2.2 CORBA . 26

4.3 The Network Management Unit (NMU) . 28
4.3.1 Role of the NMU . 28
4.3.2 NMU / SERVERS communication . 28
4.3.3 IDL Description . 29
4.3.4 Firewalls . 30

4.4 Server-side organisation . 31
4.4.1 Introduction . 31
4.4.2 Protocols and languages used in ELAN . 32
4.4.3 General Scenario . 32
4.4.4 APIs . 35
4.4.5 The ELAN driver . 36
4.4.6 Driver installation . 39

4.5 Security Aspects . 40
4.5.1 Introduction . 40
4.5.2 Connecting to the ELAN Network as a registered user 40
4.5.3 Securing access to the NMU . 41
4.5.4 Securing Server-Server communications . 42

The ELAN Client user's guide .45
5 Introduction . 47
6 Connection to a server . 48

6.1 Connection through the applet . 48
6.2 Connection with the client application . 49

7 The Workspace .50
8 The User Interface .51

8.1 The welcome Panel . 51
8.2 Selection of servers . 51
8.3 Selection of resources . 52

8.3.1 Header queries (selection of documents) . 52
8.3.2 Get all corpora query . 54
8.3.3 Documents selection . 55

8.4 The tools panel . 57
8.4.1 Concordances queries . 57

8.5 The preferences panel . 58
8.6 The i/o panel . 59

The ELAN Server installation manual .61
9 Required components . 63
10 The XSilfide archive . 64
11 Installation . 66

11.1 Environment variables . 66
11.2 Silver HTTP server configuration . 66

11.2.1 httpd.properties configuration . 66
11.2.2 other properties files . 66

11.3 ELAN server configuration . 67
11.3.1 ServerPrefs.xml configuration file . 67

12 A user-friendly configuration tool... . 69
13 Starting the server... 71
14 Testing... . 72

The ELAN common query language (CQL) .73
15 Foreword . 74
16 Introduction . 75

16.1 What is the ELAN Common Query Language and why is it needed? 75
16.2 Design objectives . 75

17 Components of the ELAN Common Query Language . 77
17.1 The context of a query . 77
17.2 Features supported in the ELAN Common Query Language 78
17.3 Query syntax . 80

18 Processing CQL queries . 86
18.1 Text queries and header queries - what they do and how they cooperate 86
18.2 Glue . 86

Server hardware and software requirements .89
19 Introduction . 90
20 Requirements . 91

20.1 General requirements . 91
20.2 Specific requirements . 91

Appendix . 93
A. JDK Supported Encoding . 95
B. The ELAN Workspace DTD . 99
C. A simple workspace instance . 100
D. SIL DTD . 102
E. ResultSets DTD . 105
F. A simple Results set instance . 106
G. Query DTDs . 108
H. Sample code of a “fake” QueryHandler driver . 113
I. General communication model between servers in the ELAN Network 124

MultiLingual Information Society

The ELAN Architecture
Deliverables D3.1-1 and D3.2-1

Project Number MLIS-121

Project Title European Language Activity Network (ELAN)

Deliverable Number D3.1-1 and D3.2-1

Work Package ID WP3

Contractual date of delivery to EU 31 December 1999

Actual date of delivery to EU 18 December 1999

Deliverable Title The ELAN Architecture

Authors Christophe de Saint-Rat

Samuel Cruz-Lara

Patrice Bonhomme

Laurent Romary

The ELAN Architecture

8

Abstract

The ELAN project is a distributed language resources system, offering access to existing resources
to their potential users throughout Europe. In order to serve the electronic multilingual resource mar-
ket, our task is to specify and elaborate a network of inter-connected resource servers. This docu-
ment defines the technical specifications of each nodes that form the ELAN network: the user
interface of the ELAN client; the resource servers and the network management unit.

Keywords

Language resources, Distributed systems, Network, User interface

Introduction

MLIS - ELAN 9

1 Introduction

1.1 Scope

One of the objectives of the ELAN project is to define a proper software environment through which
it might be possible to access and/or distribute linguistic resources, which would be spread among
different servers.

There are different reasons why to go about in this fashion.

First, it should be considered that there already exist several sites around the world (most of the
European ones being represented in ELAN) which actually act as brokers for different types of lin-
guistic resources. The idea emerging behind the sole period of the ELAN project is actually to be
able to bring together the corresponding resources, in order to provide any user with a global access
to these. In some cases this will lead to more coherence between these databases since redundan-
cies might be detected or complementary resources (e.g. parallel texts) put into correspondence.

Second, the classical view of a centralized database containing all the information in a given domain
is far from applicable to linguistic resources where, because of their intrinsic diversity (prose, theatre,
poetry, newspaper articles, dictionaries, historical documents etc.), there is a need for them to be
created and above all maintained at a place where there is the competence to do so. In particular,
the encoding background adopted within ELAN, that is SGML (and its subset XML), allows one to
continuously enrich documents with specific linguistic annotations like part of speech (POS) tags or
proper names (to quote only two possibilities).

Finally, there can be specific constraints that can preclude some given resources to be deported to
another site than the site which has originally created them. In particular, some of the partners within
ELAN have specific agreements with publishers, which express strong conditions on the actual dis-
tribution of electronic files. It is thus more sensible not to take the risk of hampering the agreement
by overly spreading the corresponding contents. In the case of the ELAN network, each resource is
only accessible through specific queries which can thus be controlled as to their actual applicability.

1.2 User in mind

Still, from the user’s point of view, there should not be much change in the way the resources are to
be accessed, which means that whether there are one or several servers should be rather transpar-
ent to him. Of course, taking into account the short duration of our project, we will not supply, in the
prototype to be delivered, the whole set of functions that an existing server such as, say, the one
developed by Leiden, is currently able to provide its own users with. Transparency is thus to be
understood with regard to existing different servers, not from the point of view of benefiting from all
the possibilities of the different sites at the same time (at least for the duration of the project).

As we will see, adopting a distributed framework, as opposed to the classical view of a centralized
database, induces several specific problems for which this deliverable is trying to provide some plau-
sible answers. Among those, we will have to deal specifically with the problem of broadcasting que-
ries to different servers and conversely combining the corresponding result sets. As an example,
statistics can only be dealt with in our distributed architecture if part of the computation is kept on the
remote servers’ sides and part is carried out locally (on the access server).

1.3 Objectives

In the context presented above, the objective of Work Package 3 (Software and Network) can be
seen as an attempt to validate the feasibility of a networked environment for accessing linguistic
resources and put forward the main aspects on which it would be necessary to focus in the future.

The ELAN Architecture

10

Beyond that, and coherently with the general approach of the standards of the project, we have tried
to base any proposal and/or implementation on existing (and even emerging) technologies (i.e. Java,
Swing, CORBA, XML), so that to ensure some kind of durability to our work.

Precisely, the aim of this work package is to ensure a good synchronization between the different
implementation tasks by providing a precise description of:

• the interaction scenario between the user and the network (through the local access point);

• the interaction between the different elements of the network;

• the interaction between the system components of Network Access as well as the interaction of
Network Access with related work packages.

In particular, the task will have to put forward the actions to be taken to ensure the consistency of the
different databases held by LR servers (users, meta-data, network configuration …), stating pre-
cisely when and in which condition the corresponding data are accessible and modifiable.

This deliverable (t0+3) is a report defining:

• the precise organisation of the user interface;

• the organisation of the network proper;

• the flow of information within the network;

• the organisation of maintenance and updating of Network Access components.

• The deliverable at t0+9 will be a software corresponding to a platform independent user client.

General network organisation

MLIS - ELAN 11

2 General network organisation

The general purpose is to develop a client/server system which allows a user to contact one or more
servers and select sub-corpora for querying, taking into account various access conditions.

2.1 A decentraliz ed netw ork - rationale

All tasks dealing with the user interface should be concentrated on the client side, while searching
and other computationally intensive operations should be accomplished by the server.

Figure 1. General structure of the ELAN network

The network (see Figure 1, “General structure of the ELAN network,” on page 11) has the following
characteristics:

• each server is an autonomous unit containing its own linguistic data;

• when a server receives a request he acts as a “broker” and transmit the request to other servers
in the network which are known to it;

• one server is accessible to registered users through a general purpose Java-compatible web
browser.

2.2 A user interface - friendl y

This interface should be designed with a non-technical user in mind. Technically advanced features
should be available in an intuitive way. Although all system components will have their own interface,
due to different functions, they must have the same “look and feel” (i.e. surface and behavior). This
reduces the time the user needs to become acquainted with the network and contributes to the
aspect of simplicity.

resources server

resources serverresources server

ELAN Network

client

The ELAN Architecture

12

This user interface will be implemented as a client at the level of which little, not to say no, linguistic
resource processing is to take place (notion of thin client). Basically, the interface will allow a user to
make his different queries and will display result sets according to some specific style-sheets associ-
ated with these.

The following design criteria should be adopted for the interface:

• it should be GUI-based ;

• its implementation should allow the user to choose its interaction language (in particular, any
PAROLE or TELRI language has to be taken into consideration).

In case of an error the user should be supplied with clear information about the error and what he
can do to correct it. If the error could not be corrected by the user (e.g., due to a software bug) the
helpdesk is automatically informed.

2.3 And the user s

To be in line with the idea of a decentralized network, we have consider that a given user should only
have to be registered at one given site and that no central user database should have to be set up.
From the network point of view this has two consequences:

• each server should manage its own user databases, containing both the general user identifica-
tion information and dynamic information related to session parameters (see section “NMU /
SERVERS communication” on page 28) ;

• each time a query is broadcasted from an access server to a remote server, an identification tag
(user id and authorization level) should be transmitted in order to evaluate the applicability of the
query.

User client (Deliverable 3.1.1)

MLIS - ELAN 13

3 User client (Deliverable 3.1.1)

3.1 Intr oduction

Given the preceding architecture, any authorized user will be provided with an environment which
will lead him along the following steps:

1. connection to a local server;

2. user identification;

3. choice of working servers. Given the list of available LR servers - available through the local
server - in the network, together with their respective server profiles, the user will select those
servers which may provide the proper resources or the proper services (tools) he wants to access
;

4. selection of a subset of resources. Through an iterative process of requests to the selected serv-
ers, the user will build up a virtual sub-corpus (i.e. By way of pointers to individual resources)
upon which he will actually work ;

5. access to document content proper. The user specifies a query which is broadcast to the appro-
priate servers holding the data selected in the user's sub-corpus. The queries are transmitted
after being translated into a Common Query Language - CQL - shared by all the servers in the
network.

As a consequence, the ELAN project makes a distinction between two types of queries:

1. Resource Selection Query (RSQ). This type of query corresponds to step 4 above. Its interpre-
tation is optimized as it accesses the index database.

2. Content Access Query (CAQ). This type of query corresponds to step 5 above. It represents a
direct access to the document content.

3.2 ELAN main ser vices

3.2.1 Connection to a local server

Within ELAN each individual server is responsible for the management of its own database of regis-
tered users. A common code of practice is to be shared between the servers belonging to the net-
work to ensure a coherent verification scheme among them.

As a result, the first step in the user-client scenario is to connect to one’s own access server by
means of a web browser which then downloads the user client as an applet window. As shown in
Figure 3, “ELAN user's reception panel,” on page 15. the applet gives access to the different ELAN
services as described below.

As an alternative, it is also possible to download a client application and use it to connect to the net-
work instead of using a browser. This is useful in two cases :

• the browser is not compatible with the ELAN system (very last versions of the usual browsers
should be used.)

• the internet connection is slow and the time to download the client applet at every connection is
very long.

During the process of sub-corpus selection, the access information of the documents is matched
with the user's entry in the user registration. Access to the documents is provided accordingly.

The ELAN Architecture

14

3.2.2 User identification

In order for a user to connect to a server, he must follow an identification process. Identification is the
process that a server executes to verify if a user is a registered ELAN user.

 Each registered user will be identify with a unique login name and a secret password.

Guest access can also be granted depending of each server policy.

3.2.3 User registration

Registration is the process that all new users will have to follow in order to use an ELAN server as a
registered user (see Figure 2, “Users registration,” on page 14). Obviously, registration is done by fill-
ing in a form. A login name and a secret password must be provided by the user. The server verifies
that the selected login name is unique. The registration will be validated by the administrator of the
local server. For this purpose, an administration interface will be also provided with each server of
the ELAN network.

Figure 2. Users registration

3.2.4 Client environment and interface

The ELAN client environment is made of a tabbed window where each tab grant access to a specific
functionality.

The ELAN interface will offer the following functions :

• Selection of the working servers;

• Selection of working resources;

• Selection of tools which may be applied to resources in the shopping basket;

• Manipulation of the shopping baskets;

User client (Deliverable 3.1.1)

MLIS - ELAN 15

• Definition of the user preferences;

The client window is build as a “reception panel”. Inside this panel, we have several other panels
which may be selected by the way of a tabbed component. Each panel offers one of the functions
enumerated above (see Figure 3, “ELAN user's reception panel,” on page 15)

The “Servers” tab allows a user to select the servers he wants to access. This panel is composed by
a list of “referenced servers”. For each referenced server, we indicate its name, its URL and its state
(i.e., on-line or off-line). Thus, a user can dynamically select all servers corresponding to his needs.

The “Resources” tab allows a user to dynamically select all the resources he wants to work with
using the “shopping basket” paradigm.

The “Tools” tab presents a set of tools that the user could use with his list of selected resources.
These tools should allow “concordances queries”, “word list queries” as well as “statistical queries”.
All tools are independent from one another, and a new tool can be added easily.

Finally, the two last tabs “Preferences” and “I/O” allow a user to respectively personalize his own
environment (saving options, interface language etc.) and manage his shopping baskets (creation,
deletion).

Figure 3. ELAN user's reception panel

a) The Workspace

In the ELAN system, the user should be able to save different kind of information or data for later
use. A registered user probably does not want to select again his client interface language every
time he connects to the network, or the servers or resources he usually works with.

As we see, there is a need for a private environment associated to each registered user. This is what
is called the Workspace.

The Workspace is saved on the user's login server, and reloaded every time he connects to the net-
work, so his private environment is automatically restored from one session to the other.

A Workspace usually contains :

• the environment preferences (see "the preferences panel" below)

The ELAN Architecture

16

• the list of selected servers (see "selection of servers" below)

• the user's saved resources basket (see "selection of resources" below)

Note that only registered users can have a private workspace, and can save it on the server. Guest
users will use a "default" workspace, and won't be able to save it on the server.

b) Servers selection

Before any query session (resource selection), a user has the possibility to select among a set of on-
line servers (see Figure 4, “Servers selection panel,” on page 16), the server(s) he wants to work
with. At any moment of the process, the user can edit his list of working servers and modify it.

Figure 4. Servers selection panel

c) Resources selection

The principle is to select resources from the various databases on the different servers, and to com-
bine them in “shopping basket”. The user has the possibility to query either the whole ELAN network
or a subset of selected resources servers. The resource selection is based on the corpus documen-
tation (meta-data i.e. the TEI headers) and enables the user to make some simple queries (on a sin-
gle field) or multiple queries (combination of fields with Boolean expressions). For that purpose, the
user will have access to a friendly query interface for editing, modifying and sending his queries to
his local server.

Another way for the user to select his working corpora is to browse through the different sub-corpora
available on the different servers.

d) Tools and content query

As the main goal of this architecture is to give a user an access to a large set of resources, it is
mostly important to provide an environment dedicated to the tools and content access. In these tools
the user will be able to edit CQL queries and send them to the various servers referenced in his
“shopping basket”.

The interface will obviously depends on the type of query and results that are expected. To edit the
CQL queries, two possibilities should be provided:

User client (Deliverable 3.1.1)

MLIS - ELAN 17

• A simple or basic querying environment for novice users based on a GUI interface, that will allow
simple queries to be made with no special knowledge of the CQL language.

• More skilled users should have the possibility to enter a query by just typing it in the CQL lan-
guage. Much more sophisticated queries exploiting the full power of the CQL could be made this
way.

Various tools will be provided, ranging for mono or multiLingual concordances queries to statistical
queries.

e) Shopping baskets

Shopping baskets keeps the resources that the user has selected. A user can have several baskets
with different resources, but only one basket can be active at a time.

The resource selection is made by way of the “shopping basket” paradigm : while the user consult
the resources he wish to access, he puts them in his current “shopping basket”.

Obviously, the shopping basket can interactively be modified and kept from one session to the other.
All on-line operations are effectively realized on the shopping basket, that is, download operations –
when possible -, but also, all operations related to the tools which may be applied to the resources,
for example, mono and multilingual concordances. These tools can be selected by means of the
“Tools” tab.

3.3 Technical requirements and implementation

3.3.1 XML for data and message encoding

In the framework of ELAN, all flowing data, (i.e. requests, results, messages, …), as well as all infor-
mation about users and user’s working spaces, will be encoded using XML (see W3C REC-xml-
19980210).

It is right now usual to use the SGML (see ISO 8879:1986) standard for encoding language
resources (see PAROLE, TELRI, Silfide, … projects). However, it has been observed, especially
within the World Wide Web Consortium (W3C), that SGML was somehow too complicated to be – as
such – a possible exchange format on the Internet. As a result, a subset of SGML – XML (which
stands for eXtended Markup Language) – has been proposed (see W3C REC-xml-19980210). It is
suggested to design the network infrastructure for linguistic resource distribution upon this new stan-
dard for the following reasons:

• XML is a proper subset of SGML and as such will be compatible with most SGML applications
implemented so far;

• XML has been fully adopted by major software providers in the framework of next generation web
browsers (in particular, Microsoft’s Internet Explorer 5, Netscape’s Communicator 5.0 and Sun’s
Project X), which will ensure platform independence for the ELAN network;

• XML provides an advanced linking mechanism (inspired by the TEI extended pointer mechanism)
– the XML Pointer Language (see W3C WD-xptr-19980303) and the XML Linking Language (see
W3C WD-xlink-19980303) -, which can be the basis for the identification of resources across the
ELAN network.

a) Resource meta-data encoding

PAROLE recommendations for linguistic resource representation are based on the TEI guidelines,
which is a document representation meta-language widely used both in the academic and the indus-
trial fields. It may thus seem natural to base any definition of a document exchange infrastructure
upon the same very language. Each resource available on the ELAN network will have an associ-

The ELAN Architecture

18

ated documentation, also called meta-data. This information will be encoding using the PAROLE
recommendations.

As the XML recommendation is a subset of the SGML standard, it should be noted that both CES
and TEI encoded data could be readily transformed into XML data.

b) ELAN Workspace encoding

The ELAN workspace is in fact an XML document associated with a given user and which is stored
on the local server between two given sessions in order to keep any information related to the user
identification or activity. It basically comprises the following elements:

• Identification information about the user;

• the current server selection (only one selection is being considered and saved);

• the different sub-corpora (or “shopping baskets”) selected by the user;

• a history of user queries to the server;

• possibly some other parameters such as personal word lists that the user would like to keep.

Appendix B. “The ELAN Workspace DTD” on page 99 presents a proposal of DTD for the ELAN
workspace and Appendix C. “A simple workspace instance” on page 100 shows an elementary
instance of such a workspace.

c) Queries and results sets encoding

In ELAN, results sets as well as queries are valid XML document. As such, they can be considered
as instances of DTDs. The various DTDs define the protocol used to build queries and results sets.
All documents or messages exchanged within the ELAN Network are made of two parts :

• a “header” compliant to the SIL DTD and providing general information (user id, server id, etc...)

• a specific part compliant to a DTD depending on the document or message type (query, resultset,
etc.)

Specific APIs are provided to parse, build and more generally deal with these documents. The API
documentation is available at the ELAN Software site: http://www.loria.fr/projets/MLIS/
ELAN

d) The SIL DTD

This is the general header associated with every document or message within ELAN. The informa-
tion stored include:

• The document’s type

• The id of the server that issued the document

• The version of the DTD this document follow

• A user identification section that includes :

- the login and password (encrypted) of the user

- the group(s) the user belongs to

e) The ELAN Query DTD

All ELAN queries are embedded in an <elanQuery> XML element, which content differ depending
on the query type. A specific DTD has been defined for all query types.

User client (Deliverable 3.1.1)

MLIS - ELAN 19

Here is an example of a concordance query document:

<!DOCTYPE sil SYSTEM "sil.dtd">

<sil sid="leiden" type="elanQuery" version="0.5">

<uid type="user">

<login id="cruz-lara"/>

<passwd><![CDATA[!@#$%^&&%]]></passwd>

<access>

<default group="guest"/>

</access>

</uid>

<elanQuery>

<concQuery>

<textQuery>A CQL Expression</textQuery>

</concQuery>

</elanQuery>

</sil>

f) The Result sets DTD

In ELAN all results sets are basically made of two parts:

1. a meta part that contains general information about the results set. This includes:

- the total number of documents matching the query

- the actual number of documents returned in this results set

- eventually error messages issued by the servers

2. a results part that contains the differents results. Each result is basically made of:

- one or more lines of raw text

- a set of attributes

The attributes names depends on the type of results. For example, in case of a concordance query
results set, each result is made of 3 attributes:

• node contains the node word

• leftContext contains the leftContext

• rightContext contain s the right context

Here is an example of a concordance query result set document :

<!DOCTYPE sil SYSTEM "sil.dtd">

<sil sid="leiden" type="resultset" version="0.5">

<uid type="user">

<login id="cruz-lara"/>

<passwd><![CDATA[!@#$%^&&%]]></passwd>

<access>

<default group="guest"/>

</access>

</uid>

The ELAN Architecture

20

<rs>

<meta>

<attr name="size">2</attr>

<attr name="totalSize">5</attr>

</meta>

<result type="concordance">

<record idno="FRW1">

<attr name="leftContext">one ring to rule them</attr>

<attr name="node">all</attr>

<attr name="rightContext">, one ring to find them,</attr>

</record>

<record idno="FRW1">

<attr name="leftContext">one ring to bring them</attr>

<attr name="node">all</attr>

<attr name="rightContext">and in the darkness bind them</attr>

</record>

<record idno="FRW2">word matched by the CQL expression </record>

</result>

</rs>

</sil>

3.3.2 Software requirements

For the same reasons of platform independence, any new piece of software developed within the
ELAN framework will be implemented in Java, a programming language which is getting the status of
a de facto standard for Internet oriented applications. Among other aspects, it is possible to mention
the following arguments for adopting Java:

• Java based Applets (i.e. Web based applications) will run on most existing Web browsers, thus
keeping the software requirements as limited as possible;

• the “Servlet” API. A servlet is a server-side component, which in the context of HTTP, is the Java
equivalent of CGI programs;

• Swing, which is a GUI component kit that simplifies and streamlines the development of window-
ing components. The Swing component set is part of a class library called the Java Foundation
Classes (JFC);

• several XML parsers developed in Java (but not only!) are already available which will ease spe-
cific development dealing with PAROLE compatible data;

• internationalization, which is the process of designing an application so that it can be adapted to
various languages and regions without engineering changes;

• Java comprises a treatment of Unicode [see ISO 10646] compatible data, making any software
language independent;

• Java IDL, which adds CORBA (Common Object Request Broker Architecture) capability to Java,
providing standards-based interoperability and connectivity. Java IDL enables distributed Web-
enabled Java applications to transparently invoke operations on remote network services using
the industry standard OMG IDL (Object Management Group Interface Definition Language) and
IIOP (Internet Inter-ORB Protocol) defined by the Object Management Group;

• Java can be interfaced, in particular, with C/C++ programming languages, thus ensuring compat-
ibility with the software available at the different partner’s sites.

User client (Deliverable 3.1.1)

MLIS - ELAN 21

In the framework of ELAN’s user interface, several Java’s API should be used, for example:

Using Swing may allow us to build high-level and high-quality GUI. As Swing is a 100% Java API we
keep the benefits of portability, platform independence, etc. Swing components are said to be light-
weight because they don't rely on user-interface code that's native to whatever operating system
they're running on. In addition, with Swing´s “pluggable look and feel” (PL&F) capabilities, we can
make the windowing components take on whatever appearance and behavior we like. So, we can
make them look and feel just like native components of the user’s computer system, or we can give
them a uniform cross-platform look and feel – that is, a look and feel that always has the same
appearance and behavior, no matter what kind of system is being used.

We should note that using Swing implies that, web browsers used in the framework of ELAN, must
be “Swing-compatible”. At present, only Sun’s HotJava is 100% Swing-compatible. In order for
Netscape’s Communicator and Microsoft’s Internet Explorer to be Swing-compatible a “Java Plug-in”
must be installed.

Also, it should be easy to see that Java’s “internationalization” will allow us to offer to ELAN users the
possibility of working with several PAROLE or TELRI languages: English, French, Italian, Spanish,
German, Dutch, Swedish, Finnish, Danish, Greek, and Portuguese. It should be noted that, several
Java classes can convert between Unicode and the set of character encoding presented on Appen-
dix A. “JDK Supported Encoding” on page 95.

3.4 Statistical tests

3.4.1 Introduction and trade-offs

Working on textual resources does not only mean browsing through contexts centered on a given
node word of expression. The ELAN network also has to provide users with the possibility to operate
on the corresponding contexts, in particular through statistical tests that may designate for instance
possible collocations associated with the node word. Still, there is a hard trade-off when considering
where exactly in the general ELAN architecture such a computation should take place, because of
the following constraints associated with the different elements relating a user with the resource he
wants to work with.

First let us consider what information is needed for the statistical tests we contemplate here:

• Reference frequencies — the number of occurrences of a given word in the “whole” textual data-
base. Depending on what is actually needed (by the user), these frequencies can be the combi-
nation of the occurrences of the word in all texts for all databases, or restricted to the texts which
he has selected;

• Contextual frequencies — the number of occurrences in the concordance lines selected by the
user.

• Positional information — in specific cases, it is important to know the contextual frequencies
associated with the different positions one given word occupies around the node word.

• Total size of the reference database — the total number of tokens in the reference corpus as cho-
sen to compute reference frequencies;

• Total size of the concordance lines — the total number of tokens within the set of selected con-
cordance lines (from which contextual frequencies have been computed)

It should be noted that these different figures can be combined (summed up) when produced by dif-
ferent servers whereas it makes no sense to combine statistical scores such as t-score or mi-score.

Let us now consider the computational constraints inherent to the general organisation of the ELAN
network and the associated conclusions that can be driven with regards to the implementation of
statistical scores.

The ELAN Architecture

22

3.4.2 From the client side

• The user does not have to know necessarily where the resources he has selected come from. He
should thus be able to choose a statistical test transparently on his selection;

• for the sake of efficiency, the concordance lines may not have been fully loaded on the user client
and thus the contextual frequencies cannot be computed here.

Conclusion: the user client will solely visualize results which will be provided to it by its local server. It
may only sort and threshold the corresponding tables (e.g. word x decreasing score x position) in an
interactive mode.

3.4.3 From the local server side

• The local server does not have all the data needed to compute a given score and it would be non-
sense to download the whole concordance lines from remote servers to the local servers;

• on the contrary, it has the best position to combine information issued by remote servers to com-
pute statistical scores;

Conclusion: the local server combines frequency tables which he queries to remote servers and pro-
vides the client with the proper statistical results.

3.4.4 From the remote server side

• The remote server can easily provide reference frequencies and reference corpus size for its own
databases (which could even have been computed beforehand). For more specific reference fre-
quencies, he should be provided with the list of resources from which these are to be computed;

• the remote server can also compute contextual frequencies and context size if it is provided with
the proper references associated with the concordance lines (element identifiers or node word
position + distance);

Conclusion: the remote server computes all the basic frequencies which are needed for a given sta-
tistical score according to the queries it receives from the local server.

3.4.5 The protocol retained within ELAN

1. Query :

<!DOCTYPE sil SYSTEM “sil.dtd”>

<sil sid=”leiden” type=”elanQuery” version=”0.5”>

<uid type=”user”>

...

</uid>

<elanQuery>

<wordFreqQuery>

<word>example</word>

</wordFreqQuery>

</elanQuery>

</sil>

2. Results set:

<!DOCTYPE sil SYSTEM "sil.dtd">

<sil sid="pisa" type="resultset" version="0.5">

<uid type="user">

User client (Deliverable 3.1.1)

MLIS - ELAN 23

…

</uid>

<rs>

<meta>

<attr name="size">3</attr>

<attr name="totalSize">10</attr>

</meta>

<result type="wordFrequency">

<record idno="FRW1">

<attr name="word">example</attr>

<attr name="frequency">10</attr>

</record>

<record idno="FRW25">

<attr name="word">example</attr>

<attr name="frequency">24</attr>

</record>

<record idno="FRW37">

<attr name="word">example</attr>

<attr name="frequency">41</attr>

</record>

</result>

</rs>

</sil>

3.4.6 Implementation

The preceding protocol for statistical information exchange will be comprised in the Java interface
provided to the different linguistic resource server. The API for queries and results sets is available at
the ELAN software site : http://www.loria.fr/projets/MLIS/ELAN

The ELAN Architecture

24

4 Organisation on the ELAN network
(Deliverable 3.2.1)

(flow of information and management)

4.1 Organisation

The network architecture of ELAN is based on three major actors:

• The Users (or Clients) which have been described in the preceding sections.

• The Network Management Unit.

The NMU should be considered as the heart of the network, that is, the NMU allows to link all the
servers which are connected to ELAN. The NMU also maintains a database of information
related to these servers (i.e., names, addresses, description, etc.).

A simple Network Management Unit (NMU) must be implemented (see Figure 5, “Overall ELAN
network architecture,” on page 25).

• The Linguistic Resources servers.

As mentioned before, this is a set of independent but associated LR servers. In particular, each
server is an autonomous unit bearing its own linguistic data. These servers can act as :

- linguistic servers and answer queries sent to them.

- brokers which broadcast the queries to all referenced and selected servers of the Network. A
server act as a broker for the users connected directly to him, that is, when he is in the position of
the login server.

Given that each single server has to:

• know about the list of servers affiliated to the network, and

• be certified in some respect before being connected to the network.

Organisation on the ELAN network (Deliverable 3.2.1)

MLIS - ELAN 25

Figure 5. Overall ELAN network architecture

4.2 Clients, Ser ver s and NMU comm unication

Two main networking protocols are used within the ELAN network:

• HTTP for client/server and server/server communications

• CORBA for NMU/servers communications

• For server/server communication, Java server-sided components known as servlets will be used
(see Figure 6, “working of Java Servlets,” on page 26), while the communication between the LR
servers and the NMU will implement CORBA, a distributed object paradigm (see Figure 7, “gen-
eral CORBA client-server architecture,” on page 27)

4.2.1 Servlets

Servlets provide a Java solution to the problems usually associated to the development of server-
side components to extend the functionalities of an HTTP server. Thus, it is a technology that can be
used to build network systems based on the usual client/server paradigm.

Servlets are a good alternative to the CGI technology (Common Gateway Interface), and are a good
answer to the issues associated to them. Among other problems, we can say that CGIs are not evo-
lutive, they suffer of a lack of performances, etc. These problems are often linked to the fact that CGI
are usually implemented in scripts languages like PERL... Servlets are implemented in Java, with all
the advantages associated with this language, in particular portability.

resources server

resources serverresources server

ELAN Network

client

local access point

NMU

The ELAN Architecture

26

Figure 6. working of Java Servlets

4.2.2 CORBA

CORBA is a technology from the OMG (Object Management Group) that can be used to specify and
develop client-server applications using distributed objects.

In CORBA, the server implements objects that can be made available to clients wherever they are
located on the network. The server “publish” its objects using a specific protocol, so these objects
become “distributed objects”. A client can then get references on these objects and use them as if
they were local.

Three main components can be identified in a CORBA system :

• the IDL (Interface Definition Language)

• the ORB (Object Request Broquer)

• the Services (Naming, Security, Events, etc...)

servlet calls

threads

one single process

servlet servlet servlet

corba server database

HTTP SERVER

web browers

Organisation on the ELAN network (Deliverable 3.2.1)

MLIS - ELAN 27

Figure 7. general CORBA client-server architecture

a) The ORB (Object Request Broker)

The ORB is the main component of the CORBA architecture. It can be seen as the “bus” through
which the objects are being distributed. To make the communication as transparent as possible to
the application, the ORB must take care of several issues that include:

• find and instantiate objects on distant computers

• invoke the methods of a distant object

• transmit parameters when invoking methods, and be sure the data types are coherent between
clients and servers.

• publish meta-information for the various objects available in an object repository

• etc.

b) IDL (Interface Definition languages)

CORBA can be used with several differents programming languages. This is one of its most interest-
ing characteristic. Now the representation of data on these languages can be very different, so we
need a mechanism to specify objects interfaces independently from their implementation. This is the
purpose of the IDL language.

IDL is an object-oriented language to specify distributed objects interfaces, independently from the
language they are going to be implemented in. For example, in a CORBA architecture, this allows a
Java client to use an object implemented in C++ on a server.

c) CORBA services

Depending on the implementation of the CORBA specifications, several services are available to the
developer. The main services that should be available with all implementations are:

• the Naming service : This service is used by client to get references on objects. Servers associ-
ate a name in a specific name-space to all objects they publish, and client can retrieve objects
references using the objects names that have been referenced.

• the Security service : Like in every distributed architecture, security in CORBA is a big issue. This
service purpose is to control access to objects or methods of objects and be sure only authorized
client can get references on distributed objects and call their methods.

O R B

clients server (objects)

IDL

IDL

IDL

IDL

IDL

IDL

java

C++

...

java

C++

...

The ELAN Architecture

28

• the Events service : This service specify and implements an alternative to the classic client-
server model. It is build on the publisher-consumer model. In this model, a server generates an
event with its associated data and clients consume the event when they get it.

4.3 The Netw ork Mana gement Unit (NMU)

4.3.1 Role of the NMU

As stated in section 2 (General Network Organisation), the Network Management Unit (NMU) is the
only persistent link between the different servers affiliated to the ELAN network. It has thus the fol-
lowing functions:

• it maintains the list of servers affiliated to the network, together with a general profile for each of
them (containing the languages dealt with by the server, the categories of document it may pro-
vide (tagged/untagged texts, lexicons, ...). To this end, each server is described by its name, its
address (URL), and a flag describing its current status;

• it should be able to answer any query from each server belonging to the network when they have
to know the list of available servers, the information attached to them and their current status;

• it updates the local database of the LR servers (SDB) through the network, each time a change
has been made to the network description or when something has changed on the part of a given
server;

• it is accessible through a simple form-based GUI, to allow the person responsible for the network
(the "network master") to add a new server, modify the characteristics of a given server and/or
disconnect a server from the network. At this point, no automatic processing will be made form
LR servers to NMU to ensure full control of the quality and coherence of the information ;

Because of its central position in the ELAN architecture, the NMU is subject to several constraints,
which are to condition its implementation. In particular, it has to be reliable as to its content since it is
in charge of providing each server with the proper information to make it communicate with the oth-
ers.

4.3.2 NMU / SERVERS communication

As indicated above, communication between the NMU and the LR servers will be implemented by
using CORBA. As in all CORBA implementations, client/server communications are described by
using the “Interface Definition Language” – IDL -.

Several implementations of the CORBA specification exists. Because it is free and completely imple-
mented in the Java language, we decided to use the JacORB broker for the implementation of the
ELAN NMU. Informations about JacORB are available at :

http://www.inf.fu-berlin.de/~brose/jacorb

Organisation on the ELAN network (Deliverable 3.2.1)

MLIS - ELAN 29

Figure 8. Detailed architecture of the ELAN network

4.3.3 IDL Description

IDL is a language used to describe client/server interaction. On the server side, IDL allows to
describe the set of objects used by the server, as well as, their associated methods. On the client
side, IDL is used as a guide which indicates what is the procedure that a client should follow to com-
municate with a server.

In ELAN, we suggest to use a single CORBA object – NMUServer -, which allows NMU/Servers
communications. This object will be published on the Corba bus using the JacORB Naming Service.

status check

NMU client

query broadcast

query parsing

SIL management

users database management

resources database

driver

ELAN server

status check

NMU client

query broadcast

query parsing

SIL management

users database management

resources database

driver

ELAN server

NMU administration

corba

corba ou udp

corba ou udp

- web browser (applet)

- client application

NMU

HTTP

HTTP

The ELAN Architecture

30

It’s name is “NMUServer” within the “ELAN” naming context. Every resource servers will have a
retrieve a reference on this object to get information about the network or a specific server
(addresses, status, etc.)

Below is the IDL description of the NMU server object.

module nmu

{

enum Status {online, offline};

typedef sequence<string> serverList;

interface NmuServer

{

boolean add(in string name, in string address, in string info);

boolean remove(in string name);

boolean isUpdate(in string name);

serverList getList();

string getAddress(in string name);

string getInfo(in string name);

Status getStatus(in string name);

};

};

4.3.4 Firewalls

As a “typical” TCP/IP implementation, JacORB must reserve some ports, on the one hand to imple-
ment the ORB and, on the other one hand, to allow client / server communication.

Unfortunately, when using JacORB one can not select the ports to be used. When JacORB is
started, it searches a free set of ports which are selected randomly. If ELAN would work by using an
Intranet framework, this would not be a problem. Obviously, ELAN works on an Internet basis, so
several LR servers may be part of a sub-network which is access-protected, because of evident
security reasons, from the Internet. This protection is the firewall. The firewall may forbid the use of
some ports, so in most cases client / server communication may not be possible. That is, JacORB
may select a set of ports which may be accessed inside the sub-network, but not from the outside.

An evident solution would be to authorize all accesses to the computer where the NMU resides. Nev-
ertheless, this solution should be quite hard to implement, because of security access restrictions
that must be maintained in a sub-network.

So, in order to test a first prototype we have decided to develop an intermediate tool whose function
is to allow all clients to communicate with the NMU, while respecting all security restrictions used in
the sub-network. This tool is currently being implemented as a “demon” which waits for an UDP
request issued by the NMU. When the request arrives, the demon connects to the NMU. When the
connection between the NMU and the demon has been done, the demon has a reference on the dis-
tributed object NmuServer, that is, the demon becomes a client of the NMU server.

By using the UDP protocol, we can select one single fixed port to receive all requests. Port number
1130 has been selected (see Figure 9, “Solving a firewall problem,” on page 31). Obviously, the
demon must be executed inside the NMU’s server sub-network.

Organisation on the ELAN network (Deliverable 3.2.1)

MLIS - ELAN 31

Figure 9. Solving a firewall problem

4.4 Server -side or ganisation

4.4.1 Introduction

This chapter presents the communication scheme between Elan servers and clients. This includes :

• the general communication scenario.

• the API for querying the servers and transmitting the results sets to the end user.

• the development of a driver to implement the communication between a server and a specific
database system.

CORBA

CORBA

UDP

ELAN SERVER

NMU

NMU UDP GATEWAY

CORBA

CORBA

0

1129

1131

65535

1130

F
I
R
E

W
A
L
L

The ELAN Architecture

32

A schema representing the complete HTTP communication scheme in ELAN can be seen in Appen-
dix. It shows the various components and the data streams.

4.4.2 Protocols and languages used in ELAN

a) The XML level

All information flowing through the network will be encoded in XML. The encoding system is defined
by the ELAN’s DTD (inspired from the Silfide Interface Language DTD). This DTD allows to encode
user’s working spaces (WS), requests on meta-data (QL), results for these requests (RS), and all
information related to users (UI).

b) The MIME level

Because of efficiency, in particular in the framework of broadcasting requests from a server to
another, not all needed information is not presented in XML documents. In general on the Internet,
data like sound, images, etc.,. are encapsulated on a MIME layer. MIME allows to assign a data type
(i.e., content-type), as well as to encapsulate heterogeneous data on a single data flow called MIME/
Multipart: on a single channel, one single connection is enough in order to exchange multiple data.

c) The HTTP level

ELAN uses the HTTP protocol (like the whole Internet) as the main communication protocol. Using
HTTP is extremely simple (two single Java instructions allow to open an HTTP connection. However,
http is a "stateless" protocol. This implies that each time a new page is loaded, the user is effectively
disconnected from the server and it keeps no information allowing to know who was the user and
what he was doing.

1. The global scenario is:

2. Open the client/server connection;

3. send a request from the client to the server;

4. send a response from the server to the client;

5. close the client/server connection.

Thus, even after logging into a site, each page accessed must pass the user name and the pass-
word back to the server to verify the user’s right to access the page. The client application (the
browser) and the server application (the Web server) have no concept of local variables, local
method calls, or objects. This problem is solved in part by using MIME/Multipart.

4.4.3 General Scenario

a) Connection

The user connects to the network through one of the registered servers. He can connect either with
a client application (he will need to provide the address of the server) or with an applet. The server
the user is directly connected to is referred further as the "login server". This server will act as a
gateway, and all data exchanged between the client and the network (the login servers or other lin-
guistic servers) will pass through it.

Organisation on the ELAN network (Deliverable 3.2.1)

MLIS - ELAN 33

b) Scenario

Once the user is connected to one of the ELAN servers, all the network traffic (queries and results)
between this specific client and the network will pass through the "broadcast" servlet on the login
server. The main purposes of this servlet are to :

• broadcast a query to all servers selected by the user.

• broadcast a query to all servers appearing in a resources basket.

• merge the results from the differents servers into one results set to be transmitted to the user
(see SuperResultSet below).

• maintain a cache memory of the results associated with the queries, until they are explicitly
closed.

Figure 10. broadcast of a query

The user sends a query to the login server's broadcast servlet which will act as a broker and transmit
it to the other selected servers.

Considering that the communication is implemented above the HTTP protocol, and that we have a
general API with a built-in cache system, allowing connection to a server and sessions manage-
ment, the java code to connect to a server would be :

QueryConnexion co = new QueryConnexion(URL);(1)

QueryStatement st = co.getStatement()(2)

QueryResultSet rs = st.sendQuery(CQL);(3)

(1) : QueryConnexion purpose is to initiate a communication with a server, by providing its address
and the service we want to connect to, in the standard URL format used for HTTP connections.

(2) : Once the connection is instantiated, we ask for a "statement" object, that handle the sessions
and cache systems. This class will be used to send a query, or close the session.

(3) : Using the statement object, a CQL query can be send. The sendQuery call will return a results
set object, which can be used as a standard Java Enumeration to retrieve the results.

This scenario is used both for the “Client”/”Login Server” connection and the “Login Server”/”Other
ELAN servers” connections. Both cases are illustrated in the following examples :

• The user applet connects to the Broadcast servlet, send a query(CQL) and gets the results set as
an Enumeration.

QueryConnexion co = new QueryConnexion("http://elan.nancy.fr/BroadcastServ-
let");

QueryStatement st = co.getStatement()

UserQuery broadcastQuery servlets

Nancy

Pisa

Leiden

Birmingham

servlet
(1)

(2)

The ELAN Architecture

34

QueryResultSet rs = st.sendQuery(CQL);

• The Broadcast servlet connects to the birmingham query servlet, send a query(CQL), gets the
results set as an Enumeration and read the 10 first results.

QueryConnexion co=new QueryConnexion("http://elan.birmingham.uk/QueryServ-
let");

QueryStatement st = co.getStatement()

QueryResultSet rs = st.sendQuery(CQL);

for(int i=0;rs.hasMoreElements() && i<10;i++)

Object o = rs.nextElement();

The main purposes of st (instance of the QueryStatement class) are :

• maintain a consistent connection between all components (user/BroadcastServlet and Broad-
castServlet/QueryServlets) through a unique session ID (1 query=1 session id).

• store the result sets in a cache memory for as long as the session is valid.

A session remains valid until the user closes the connection or a time-out exception occurs.

The query is sent through the sendQuery method of the Statement class, which will return an
Enumeration to read the entries from the results set, through the usual hasMoreElement() and
nextElement() methods.

The nexElement() method returns one result at a time. It will do all that is necessary to retrieve the
result from the results set, which means :

• for the client applet or application :

- returns the result directly from the local cache, if its there.

- contacts the login server and retrieves the next results.

• for the login server :

- returns the next results directly from the local cache, if they are there.

- contacts all servers involved in the current session, and retrieve the next results before to return
them to the client.

The client connects to "Broadcast servlet" on the login server.

The login sever connects to the "Query servlets" on the resources servers.

As you can see in the general architecture schema at the end of this document, there are two levels
of cache memory. One on the client applet or application and one on the login server.

c) Super Result Set

The Broadcast servlet will merge the result sets from all the elan servers that answered the user's
query in a super results set. It is a class which purpose is to call the next() methods of the servers
specific results sets, merge the data in a convenient way (i.e. build a new results set), and send it to
the user.

Organisation on the ELAN network (Deliverable 3.2.1)

MLIS - ELAN 35

Figure 11. broadcast of a query and merging of the results in a super results set

d) session ID

It is possible that the result of a query is huge and cannot be sent at once back to the user.

In that case, a subset of the complete result set should be sent, and the remaining parts should be
sent only on user request. Now HTTP is a connectionless protocol, which means that we need a
mechanism to specify that a first sendQuery(...) call and the following next(...) calls belong to the
same context.

For example, when a user asks his login server for the next entries of a results set, the server needs
to identify the user and figure out to which former query it refers.

4.4.4 APIs

a) QueryConnection

• QueryStatement getStatement()

returns a new QueryStatement object (i.e. a new session)

b) QueryStatement

• QueryResultSet sendQuery(String query)

send a CQL query

• QueryResultSet sendQuery(String query, String basket)

send a CQL query with a resources basket (in XML format)

• QueryResultSet sendQuery(String query, Vector servers)

send a CQL query and a list of server (sid) to which the query should be sent

• String getSessionID()

returns the session id

• void close()

close the session

c) QueryResultSet

• booelan hasMoreElements()

returns true if there's still results to be retrieved in this results set

• Object nextElement()

returns the next result in this results set

next()

Super ResultSet

next()

next()
next()

user applet Result Set

Result Set

Result Set

Broadcast servlet query servlets

next()

next()

next()

The ELAN Architecture

36

• void close()

close the session

• String getSessionID()

returns the session id

• int size()

returns the total number of results in this result set

• int[] getErrorCodes()

returns the error codes in this results set

• String[] getErrorTexts()

returns the error texts in this result set

• String[] getErrorSids()

returns the ID's of the servers that issued errors

• String getErrorString()

returns a string formatted with all errors, to be displayed to the user

4.4.5 The ELAN driver

Since the implementation of the linguistic databases is specific to each server, we need a mecha-
nism to translate the CQL query into the language corresponding to the local database.

For this purpose, a common interface, the QueryHandler interface, is to be implemented by each
server connected to the Elan network. This is the only part of the architecture to be developed spe-
cifically for a proprietary resources interrogation system. It will allow the communication between this
system and the ELAN network.

In the ELAN scenario, the QueryServlet receives a query and transmits it to the QueryHandler driver
which will connect to the local resources database, handle the query, and return the result as an
ElanResultSet object.

a) the QueryHandler Interface

An ELAN driver must implements the following interface :

public interface QueryHandler

{

// starts a new query on the whole corpus (typically to get references to

// the documents matching the query and build a basket)

public ElanResultSet executeQuery(String sessionID,

String CQLQuery);

// starts a new query with the documents referenced in the basket

public ElanResultSet executeQuery(String sessionID,

String CQLQuery, String basket);

// gets the next entries of the result set if the context was too big to

// send it all at once with the executeQuery call. executeQuery(...) with

// the same sessionID should have been called before.

Organisation on the ELAN network (Deliverable 3.2.1)

MLIS - ELAN 37

public ElanResultSet next(String sessionID);

// close the session identified by the session number "sessionID"

public void close(sessionID);

}

An example of implementation of a “fake” driver is available in Appendix.

b) Parsing an ELAN Query

The ELAN query is transmitted to the driver as a string containing an XML SIL document. It has to
be parsed into an "ElanQuery" before to be used. See Appendix H. “Sample code of a “fake” Query-
Handler driver” on page 113 to see how to do this.

The ElanQuery interface provides access to the ELAN query and allows to easily extract information
from it. Its main methods are :

• short getQueryType()

returns the type of the query. It can be :

QUERY_WORDFREQ : word frequency query

QUERY_WORDLIST : word list query

QUERY_CONTEXT : context query

QUERY_STATS : statistic query

QUERY_CONC : concordance query

QUERY_HEADER : header query

• String getHeaderQuery()

returns the header query (CQL) or null

• String getTextQuery()

returns the CQL query

c) Parsing a resources basket

A "SILBasket" class is to be used to parse and extract information from the basket XML string that
can be sent with a query. It can also be used to build a new basket object.

A basket is basically made of "resources" object, which are made of a SID (the server from which the
resource come from), a IDNO (a unique resource identifier on the sid server) and eventually a set of
display attributes (title, author, etc.).

The main methods of the "SILBasket" class are :

parsing :

• Resource getResource(String sid, String idno)

returns the resource identified by this sid/idno couple, or null

Resource.getSId returns the resource sid

Resource.getIdno returns the resource idno

• boolean containsResource(String sid, String idno)

returns true is the resource identified by sid/idno is in this basket

The ELAN Architecture

38

• int getSize()

returns the number of resources in this basket

• Enumeration getResources()

returns an Enumeration for browsing through the resources in this basket.

building :

• boolean addResource(String sid, String idno)

add a resource to the basket (without any attributes)

• boolean addResource(String sid, String idno, Hashtable attrs)

add a resource to the basket with some display attributes in a hashtable

• Resource removeResource(String idno, String sid)

remove the resource identified by the sid/idno couple from the basket

d) Building an ELAN results set

The ElanResultSet Interface can be used either to extract results from an existing results set or to
build a new one. It allows easy manipulation of XML results sets documents that conforms to the
DTD in Samuel Cruz-Lara's document "Result Sets in ELAN".

The ElanResultSetImpl class implements the ElanResultSet interface.

An instance of ElanResultSetImpl should be returned by the executeQuery(...) and next(...) methods
of the QueryHandler implementations.

The methods in the ElanResultSet interface are :

Parsing :

• Enumeration getRecords()

Initializes a Result Set (as an enumeration)

• getSize()

returns the number of results in this set

• getTotalsize()

returns the total number of results matching the initial query

• String getResultType()

returns the type of the results set

• toString()

returns the results set as a string (XML format)

• int[] getErrorCodes()

returns the error codes in this result set

• String[] getErrorTexts()

returns the error texts in this result set

• String[] getErrorSids()

returns the ids of the servers that issued the errors

Adding results :

Organisation on the ELAN network (Deliverable 3.2.1)

MLIS - ELAN 39

• void addAttribute(String name, String value)

add an attribute to a results set

• void addRecord(String sid, String idno, String data, Hashtable attributes)

• void addRecord(String sid, String idno, String data)

• void addRecord(String idno, String data, Hashtable attributes)

• void addRecord(String idno, String data)

• void addRecord(String idno, Hashtable attributes)

add a single result element to the results set (a record element)

- sid is the server unique identifier on the network

- idno is the resource unique identifier on the server

- data contains raw data as a string or null

- attributes contains a set of attributes stored in a hashtable.

• void addRecord(String record)

add a new record element to the results set

• void setTotalSize(int ts)

set the total number of results matching the query

• void setResultType(String type)

set the result type

Adding Errors :

• void addError(String sid, int errorCode, String message)

• void addError(String sid, int errorCode)

add an error message to the results set

- sid is the server unique identifier on the network

- errorCode is the code of the error (-1 is the generic error code)

- message is an optional message to be displayed to the user

4.4.6 Driver installation

The server preferences file ($HOME/xsilfide/silfide/preferences/ServerPrefs.xml)
contains a set of attributes and their values. This file is read by the server when it starts, and should
specify the name of your driver (complete package path) in the "driver" attribute :

Note that your CLASSPATHvariable must contain a path to your driver implementation, so that the
Java class loader can locate it.

Below is an example of a ServerPrefs.xml file, with the driver attribute (in bold) pointing to the
QueryHandlerExample driver in the fr.loria package.

<prefs>

<pref name="status" value="online"/>

<pref name="name" value="chris2"/>

<pref name="nmua" value="godefroy.loria.fr"/>

<pref name="nmup" value="1130"/>

<pref name="driver" value="fr.loria.QueryHandlerExample"/>

The ELAN Architecture

40

</prefs>

4.5 Security Aspects

4.5.1 Introduction

Two kind of users can connect to the ELAN network : guest users or registered users. This mean
that we need a mechanism to identify users and their right to access specific resources. For this pur-
pose, a user database management system providing password protected connection and pass-
words encryption has to be developed, as well as a secure transaction layer to protect the
communications between servers.

Two main security threats can be identified in the Elan architecture regarding secure and protected
communications. We should :

• Control access to the NMU and especially to its administration methods.

• Secure the communications between servers (signature and/or encryption).

This basically means that we need to :

• Identify trusted clients on the NMU.

• Identify users on servers so only the authorized ones get access to protected resources.

• Make sure that no user can connect as someone else, in order to get specific privileges.

• Make sure that intercepting the data exchanged between servers is useless.

Our purpose in the next sections is to present differents methods that can be used to identify users
at connection and secure transactions taking place in the network, either between resources servers
or between these servers and the NMU.

4.5.2 Connecting to the ELAN Network as a registered user

To connect as a registered user, a login name and password has to be sent over the network so the
server can identify the user and eventually allow access. Since it is pretty unsafe to send a password
unencrypted over a network, this requires a mechanism to encrypt the password and ensure that
intercepting it would be useless. This is the purpose of the OTP system.

OTP is for One Time Password and means basically that a password can be used only one time
before to be invalidated. Thus, both the server and clients have to recalculate a new password for
every new connection.

The password is calculated with two parameters : the secret key and the challenge key. The secret
key is provided to both the server and the clients, but never transmitted upon the network, so it can-
not be intercepted. The challenge key is a counter, which is incremented by the server after every
connection. Before connecting, the client ask the server for the challenge key and with its secret key
calculates the password to be transmitted. The server does the same and if the calculated pass-
words match when the client try to connect, the access is granted.

Controlling access to specific resources on specific servers involve the development of a real user
database where users belongs to groups.

For example, the "guest" user would belong to a "guest" group with minimal access rights.

A registered user could belong to a group associated with a specific project and be allowed to
access the corresponding resources.

Organisation on the ELAN network (Deliverable 3.2.1)

MLIS - ELAN 41

The specification of such a user database management system is not this document purpose
though...

4.5.3 Securing access to the NMU

Some of the methods provided by the NMU IDL interface are used for administrating the NMU data-
base, and so have to be protected in a way a fake client implemented by some untrusted people
could not execute them, and so trash the NMU database.

Therefore, we have to implement a system allowing only trusted clients to call these methods.

Two options are available for securing access to the NMU. The first one, the CORBA Security ser-
vice, is implemented as a standard CORBA service. The second one is based on a password sys-
tem.

a) The CORBA Security Service (CSS)

As a distributed computing architecture, CORBA provide a security service, based on the Security
Reference Model (SRM). The Object Management Group (OMG) identifies the following security
threats to a CORBA System :

1. An unauthorized user of the system gaining access to information that should be hidden from
him.

2. A user masquerading as someone else, and so obtaining access to whatever that user is autho-
rized to do, so that actions are being attributed to the wrong person.

3. Security controls being bypassed.

4. Eavesdropping on a communication line, so gaining access to confidential data.

5. Tampering with communication between objects : modifying, inserting and deleting items.

6. Lack of accountability due, for example, to inadequate identification of users.

In Elan, we are essentially interested in the fifth point. We want to allow access to administration
methods of the NMU only to the administration clients. The other clients (the Elan servers) should
never gain access to these methods, neither should any untrusted client. The following features are
included in the countermeasures provided by the CSS system :

1. Controlling access to :

- an IDL interface.

- a subset of the implementations of an IDL interface.

- interface operations and collections of interface operations.

2. Identification and authentication of :

- the user to the CORBA system.

- the client to the target.

- the target to the client.

Though CSS provides exactly the kind of protection we need in Elan, it is not distributed with all
CORBA Brokers... On the contrary, most of the free CORBA brokers implemented in Java imple-
ments a very thin subset of CORBA services, not including the security service.

The ELAN Architecture

42

b) Password protected access to the administration methods

The second option consists of providing a crypted password as a parameter to any of the administra-
tion methods defined in the IDL interface. As a consequence, the code would actually be executed
only if the right password is provided.

The two methods of the NmuServer class that should be protected this way are add and remove,
which respectively allow adding and removing of Elan servers. They could be defined in the IDL this
way :

boolean add(in string password, in string server_name, in string
server_address, in string server_info);

boolean remove(in string password, in string server_name);

To ensure that intercepting the password is useless to a third person, an OTP system can be used,
and a simple method can be added to the NMU IDL interface to allow the transmission of the chal-
lenge key :

string getChallengeKey();

4.5.4 Securing Server-Server communications

The requests made to the Elan servers contains identification and authentification information that
the servers use to determine whether the user is allowed to access the data he wants to.

The point is if untrusted users get this information (by listening the network for example), they can
modify the request by hand and connect to the network as a trusted client, receiving access to the
corresponding resources.

There is no way to ensure none would intercept the requests when they are transmitted from one
Elan server to another, but we can make this information useless with encryption or signature tech-
nologies.

a) SSL (Secure Sockets Layer)

The protocol is composed of two layers. The lowest, on top of some reliable transport protocol like
TCP/IP, is the SSL Record Protocol, used for encapsulation of various higher level protocols. One of
these, the SSL Handshake Protocol, allows servers and clients to authenticate to each other and to
negotiate an encryption algorithm and cryptographic keys before the application protocol transmits
or receives its first byte of data.

SSL is well known on the Internet since it's usually used to secure transaction with the HTTP proto-
col, which in the above architecture is the application protocol.

The point is that not every HTTP servers implements this protocol, and that in Elan, we don't really
need encryption but only authentification and integrity check of the messages being send between
servers.

b) S/MIME

S/MIME (Secure/Multipurpose Internet Mail Extensions) provides a standard way to send and
receive secure MIME data. Based on the MIME standard, it provide the following security services :

• authentication

• message integrity

• non-repudiation of origin, using digital signatures

• data security using encryption

Organisation on the ELAN network (Deliverable 3.2.1)

MLIS - ELAN 43

In Elan, the CQL is already encapsulated in a MIME MULTIPART document, which means it would
be very easy to implements this protocol using probably only the signature feature.

An implementation of the S/MIME standard in the Java programming language is available at http://
jcewww.iaik.tu-graz.ac.at/

c) PGP Signature

PGP (Pretty Good Privacy) is a public key encryption system. This means that it does not depend on
the encryption key being kept secret for its security. The public key is used to encrypt messages and
is distributed to any instance that would like to send a secure message. A separate key, known as
the secret key, is used to decrypt messages. PGP can be used either to encrypt or only sign mes-
sages. Since encryption using PGP is forbidden in some countries including France, we should not
use this feature in the Elan network, but signing a message using this system seems to be a good
solution. PGP encryption and signature features have been coupled with the MIME standard and is
known as the PGP/MIME system.

The ELAN Architecture

44

MultiLingual Information Society

The ELAN Client user's
guide

Deliverable D3.1-2

Project Number MLIS-121

Project Title European Language Activity Network (ELAN)

Deliverable Number D3.1-2

Work Package ID WP3

Contractual date of delivery to EU 31 december 1999

Actual date of delivery to EU 18 décembre 1999

Deliverable Title The ELAN Client user's guide

Authors Christophe de Saint-Rat

The ELAN Client user's guide

46

Abstract

The ELAN project is a distributed language resources system, offering access to existing resources
to their potential users throughout Europe. In order to serve the electronic multilingual resource mar-
ket, our task is to specify and elaborate a network of inter-connected resource servers. This docu-
ment defines the technical specifications of each nodes that form the ELAN network: the user
interface of the ELAN client; the resource servers and the network management unit.

Keywords

Language resources, Distributed systems, Network, User interface

Download ELAN client installers

MacOS client installer :

http://www.loria.fr/projets/MLIS/ELAN/private/deliverables/elan/ElanInstallMacOS.tar.gz

Unix client installer :

http://www.loria.fr/projets/MLIS/ELAN/private/deliverables/elan/ElanInstallUnix.tar.gz

Windows client installer :

http://www.loria.fr/projets/MLIS/ELAN/private/deliverables/elan/ElanInstallWindows.tar.gz

Introduction

MLIS - ELAN 47

5 Introduction

The ELAN network's purpose is to merge into one virtual database various linguistic resources
spread among different systems, and provide a common way to query them and retrieve results.

To do so, an easy to use client application with a user-friendly interface has been developped.

Using the ELAN network implies to follow a few steps :

• Connect to one server of the network either using the application client or the applet available on
the login server's homepage.

• Select the servers to be queried.

• Select documents or corpora to work with by :

- querying the servers

- choosing resources

- adding them in a "resources basket".

• Perform content queries on the selected documents (currently only corcordances queries are
supported)

resources server

resources serverresources server

ELAN Network

client

The ELAN Client user's guide

48

6 Connection to a server

The ELAN client is entirely developped in the Java programming language, which means that you
can use it with any Java enabled operating system and computer. This includes a PC with Windows
95/98 or NT, PC with Linux, a Macintosh with MacOS or LinuxPPC, or any UNIX workstation.

Whatever system you are using, you will have to install a Java Virtual Machine, as well as the Swing
Components (used for the user interface design).

Two configuration can be used :

• JDK 1.1.6 minimum with SWING 1.1.x

• JDK 1.2

If they are not already installed on your system, you can find these components as well as the instal-
lation instructions at Sun's web site : http://java.sun.com

6.1 Connection thr ough the applet

If you have a swing enabled web browser, you can start the ELAN client as an applet directly by con-
necting to one of the servers referenced on the ELAN network.

Just point your browser to one of the server by entering its URL and follow the instructions on the
page.

You will find a link to start the applet as a guest, or you can enter a login name and password to con-
nect as a referenced user. Note that in that case you must first have been referenced on this server
as a member. Please contact the server administrator to do so.

Connection to a server

MLIS - ELAN 49

6.2 Connection with the c lient application

As an alternative it is also possible to download and install an ELAN client on your computer. The
main advantage compared to the applet is that the connection will be faster since the required
classes are locally installed on your computer, and don't need to be downloaded everytime.

This is also the only way to work with ELAN if you don't have a Swing enabled Web browser.

To dowload the clients installers, point your browser to one of the ELAN servers and download the
client suitable for your system. Three client installers are available for Windows 95/98/NT, Macintosh
and Unix systems.

When you start the client, you will be prompted to enter the login server address, and eventually a
login name and password if you want to connect as a registered user. Leave these fields blank if you
want to connect as a guest.

The ELAN Client user's guide

50

7 The Workspace

In the ELAN system, the user should be able to save different kind of information or data for later
use. A registered user probably does not want to select again his client interface language everytime
he connects to the network, or the servers or resources he usually works with.

As we see, there is a need for a private environment associated to each registered user. This is what
is called the Workspace.

The Workspace is saved on the user's login server, and reloaded everytime he connects to the net-
work, so his private environment is automatically restored from one session to the other.

A Workspace usually contains :

• the environment preferences (see "the preferences panel" below)

• the list of selected servers (see "selection of servers" below)

• the user's saved resources basket (see "selection of resources" below)

Note that only registered users can have a private workspace, and can save it on the server. Guest
users will use a "default" workspace, and won't be able to save it on the server.

The User Interface

MLIS - ELAN 51

8 The User Interface

The ELAN client user interface is divided into three main zones :

• the top zone contains several tabs to browse through the various panels.

• the main center zone contains the currently selected panel.

• the botton zone is a status line to display extra informations, errors or messages sent by the ser-
vers.

The various "panels" are independant and allows selection of resources servers, querying of serv-
ers, basket management, user interface preferences selection etc.

The interface is available in several languages. Curently English, French, German and Dutch are
supported.

8.1 The welcome P anel

You see this panel when you first launch the client application or applet. It just informs you that you
are connected to the ELAN network, and allows you to quit with the "Close" button.

8.2 Selection of ser ver s

This panel displays a list of all servers referenced on the NMU (Network Management Unit), that is,
all servers you can contact through the ELAN network.

For each server, the following information is provided :

• the server's name

• the server's address on the internet (as a standard URL)

• the server's availability

• a short description of the server and its content

The ELAN Client user's guide

52

The last column of the servers table display the servers availability:

 : the server is online and ready to answer queries.

 : the server is down and no queries will be sent to it.

The information box below the servers table will display the profile of a specific server, depending on
the position of the mouse cursor. Move it over the servers table to get information about the servers.

You can select a server simply by clicking the corresponding line in the servers table. The selected
server will be added to the servers section of your workspace.

You can also select or unselect all servers respectively with the "select all" and "unselect all" buttons.
Multiple selections are allowed through "shift-click" and "control-click".

All following queries will be sent to the selected servers.

8.3 Selection of resour ces

Before to be able to send content queries, the ELAN scenario involves a phase of documents or sub-
corpora selection. All documents will be saved as references in the current basket, which will later be
sent with every content query.

This is done through 3 differents panels :

• A panel to send header queries and select individuals documents depending on their author, title
or language.

• A panel to get a list of sub-corpora from the selected servers.

• A panel to display documents or sur-corpora references and add them in the current basket.

8.3.1 Header queries (selection of documents)

Here you can ask the selected servers for single documents references matching your query.
You have two ways for building your query:

• by directly typing your CQL query in the query text field.

The User Interface

MLIS - ELAN 53

• by using the graphic interface to build a query based on "titles", "authors" and "languages" attribu-
tes.

The query helping interface is made of a list of criteria and two button "+" and "-" on the right part to
add or remove criteria. Each criteria contains 3 parts:

• a pop-up menu to choose the criteria attribute (title, author or language).

• a pop-up menu to choose an operator.

• a text field to enter the value the criteria should match, considering the selected operator.

The ELAN Client user's guide

54

After building your query with the graphic interface, you can preview it by clicking the "Query" button
left to the query text field.

Note : The formalism used to build a query from the graphic interface might not be supported by
some servers. In that case no results will be returned. Since this system is still under development,
consider that typing directly your query or using only sur-corpora references is safer.

Once the query is completed, the client will automatically switch to the "resources selection" panel to
display the results.

8.3.2 Get all corpora query

This panel is made of a single "Get all corpora" button that will send a request to all selected servers
so they return a list of references for all sub-corpora they can handle.

Eventually, a single reference representing the complete server's corpus will be returned. Adding
such a reference to the current basket means that content queries will apply on the whole server's
corpus.

Once the query is completed, the client will automatically switch to the "resources selection" panel to
display the results.

The User Interface

MLIS - ELAN 55

8.3.3 Documents selection

The document selection panel is basically divided in 3 parts :

• A botton line displays information about the current results set, that is the number of hits corres-
ponding to the query and the number of documents or sub-corpora references actually displayed.

• The left part displays the documents references corresponding to the header query.

• The right part displays the content of the current basket, which will be sent with any further con-
tent query.

The ELAN Client user's guide

56

You can select documents by clicking on them, and you can use as usual "shift-click" and "control-
click" for multiple selection.

Add documents in your basket simply by selecting them in the left list and clicking the ">" button
between the documents list and the basket content list. The selected documents should appear in
your basket content list on the right.

The "Next" button is used to display the next "results shown" results, if too many results have been
returned to be displayed at once.

The "Close" button closes the current session and deletes the current results set.

The "Remove" button under the basket panel removes the selected documents from the current bas-
ket.

The User Interface

MLIS - ELAN 57

8.4 The tools panel

This panel presents differents tools to work with the resources saved in the current basket.

Queries will be sent to servers depending on the content of the current basket.

Though many tools might be available in the future, only a concordance line tool is provided cur-
rently.

8.4.1 Concordances queries

This tool allows you to send concordances queries in the CQL (Common Query Language) format.

Type your CQL query in the top text field and send it using the "Send" button. The status line will dis-
play a message to inform you that the query is being sent and processed.

The concordances lines will be displayed in a table, and centered on the node word, with left and
rights contexts at both sides.

The bottom text zone displays extra information about a specific concordance line (document's title,
author, language etc.). Just click on a concordance line to see this information.

Finally, the bottom line shows information about the result set being displayed :

• "Number of records" is the total number of hits of your query with the current basket.

• "Results shown" is the actual number of results displayed. You can retrieve the next results by
clicking the "Next" button.

• The last zone displays the range of results being displayed from the current results set.

The ELAN Client user's guide

58

The "Next" button will retrieve the next "results shown" results from the current results set. You can
specify in the "results shown" field the number of results you want to retrieve.

The "Close" button ends the session, and delete the current results set.

8.5 The pref erences panel

This panel allows you to configure your environment. Three parameters can be configured :

• you can choose if the client starts with a new basket at each connection or if it starts with a new
empty basket.

• you can choose the language for the interface (English, French, German or Dutch)

• you can choose how and when your workspace will be saved on the server

Note that the workspace (including your resources basket, servers selection and environment prefer-
ences) will be saved on the server for the next session only if you are a registered user.
Nothing will be saved on the server if you are connected as a guest.

The User Interface

MLIS - ELAN 59

8.6 The i/o panel

This panel allows you to manage your resources baskets . Using this tool, you can :

• create a new empty resources basket

• delete the resources baskets

• reload baskets (make active saved basket)

All resources baskets are saved in the Workspace document.

Using the "Save Workspace" button, you can also save your workspace (including your resources
basket, servers selection and environment preferences) on the server, if you are connected as a reg-
istered user.

The ELAN Client user's guide

60

MultiLingual Information Society

The ELAN Server
installation manual

Deliverable D3.2-2

Project Number MLIS-121

Project Title European Language Activity Network (ELAN)

Deliverable Number D3.2-2

Work Package ID WP3

Contractual date of delivery to EU 31 décember 1999

Actual date of delivery to EU 18 décembre 1999

Deliverable Title The ELAN Server installation manual

Authors Christophe de Saint-Rat

The ELAN Server installation manual

62

Abstract

The ELAN project is a distributed language resources system, offering access to existing resources
to their potential users throughout Europe. In order to serve the electronic multilingual resource mar-
ket, our task is to specify and elaborate a network of inter-connected resource servers. This docu-
ment defines the technical specifications of each nodes that form the ELAN network: the user
interface of the ELAN client; the resource servers and the network management unit.

Keywords

Language resources, Distributed systems, Network, User interface

Download ELAN server

http://www.loria.fr/projets/MLIS/ELAN/private/deliverables/elan/xsilfide.tar.zip

Required components

MLIS - ELAN 63

9 Required components

Some components are required in order to install an ELAN server:

• JDK v.1.1.6 minimum (v.1.1.8 is best)

http://java.sun.com/products/jdk/1.1/index.html

• Swing components (JFC v.1.1 minimum)

http://java.sun.com/products/jfc/index.html

• Servlet API (JSDK 2.1 minimum)

http://java.sun.com/products/servlet/index.html

• Corba Broker (JacORB 1.0 minimum)

http://www.inf.fu-berlin.de/~brose/jacorb/

The ELAN Server installation manual

64

10 The XSilfide archive

The ELAN server package is available as a "tar.zip" file that you can decompress with the following
commands:

unzip xsilfide.tar.zip

tar -xvf xsilfide.tar

This will create an xsilfide directory that contains everything to start a new server. The JacORB
corba broker and the Java servlets API are included in the release, but you have to install a JDK and
the swing components separately.

The xsilfide directory is organized as follow :

lib/
sxp.jar XML parser
xlink.jar xLink support
xpointer.jar xPointer support
client.jar the client applet and application
server.jar the server classes
query.jar communications between servers and clients
util.jar various utility classes to be used in the architecture
silfideall.jar complete archive with all the classes

nmu/ packages to access the NMU
lib/

jacorball.jar the JacORB CORBA broker
nmu.jar package to connect to the NMU with CORBA

silver/
classes/ the classes for the Silver HTTP server
lib/

silver.jar the Silver HTTP server jar file
servlet-2.1.0.jar the Java Servlet API version 2.1

silfide/
bin/ scripts to start the server (for UNIX and WINDOWS)
cache/ contains the cache files when the server is running
classes/ the Java classes (equivalent to lib/silfideall.jar file)
dtd/ the DTDs for the various XML documents
htdocs the home of the server

index.html the ELAN server homepage
jars/ jars files for the client applet

icons/ icons for silver
images/ images (ELAN logo etc.)
lib/ empty...
logs/ the silver server logs files
preferences/ the server configuration files
properties/ the silver properties files
realms/ not used

The XSilfide archive

MLIS - ELAN 65

servlets/ the various ELAN servlets
users/ the users profile
workspaces/ the users workspaces

security/
otp/ contains the classes for the «one time password»

autenthification system

serverAdmin/ contains the server administration application

The ELAN Server installation manual

66

11 Installation

11.1 Envir onment v ariab les

The CLASSPATH environment variable must be set to provide access to the required java packages.
It should contain paths to:

• external components :

$HOME/jdk1.1.8/lib/classes.zip

$HOME/swing-1.1/swingall.jar

$HOME/jsdk2.1/servlet.jar

$HOME/JacORB1_0/classes/jacorb.jar

• ELAN components

XML parser

$ELAN_INSTALL_DIR/xsilfide/lib/sxp.jar

Silver HTTP server

$ELAN_INSTALL_DIR/xsilfide/silver/lib/silver.jar

ELAN package

$ELAN_INSTALL_DIR/xsilfide/lib/silfideall.jar

11.2 Silver HTTP ser ver configuration

The xsilfide/silfide directory contains all the components specifics to the ELAN server.

11.2.1 httpd.properties configuration

Edit the httpd.properties file in the properties directory and set the following attributes :

Where is installed the server ?

silver.root=$ELAN_INSTALL_DIR/xsilfide/silfide

Hostname and port number

silver.host=localhost

silver.port=8888

Server administrators email address

silver.admin.email=desaintm@loria.fr

11.2.2 other properties files

The other properties files contain various attributes but should not be modified.

• servlet.properties contains the servlets configuration and initialization arguments.

• mime.properties contains the MIME types recognized by the server.

• aliases.properties contains aliases defined by the server.

• silfide.server.properties contains the paths to some important directories in the xsilfide archive.

Installation

MLIS - ELAN 67

11.3 ELAN ser ver configuration

The ELAN specific directories are located in xsilfide/silfide :

htdocs

WorkspaceApplet.html : HTML file to start the applet.

jars

silfideall.jar: ELAN archive containing the applet code and all needed files.

sxp.jar: XML parser.

silver.jar: the client use the MIME classes in this package

servlet.jar: for the applet/servlet communication

servlets

ConnectServlet.class : connect a user to the server.

BroadcastServlet.class : broadcast queries to the registered elan servers.

NMUSilfideClientUniversalServlet.class : connection to the NMU.

SILManagerServlet.class : management of SIL files.

SilfideStatusServlet.class : called by the NMU to check server status.

QueryServlet.class : answer the queries by calling the appropriate query driver.

properties

Contains the HTTP server properties files (httpd, servlet, aliases, mime, etc.)

preferences

Contains the ELAN server preferences. (the ServerPrefs.xml file)

workspaces

Contains the users saved workspaces and the "guest" workspace.

cache

Contains the results sets cache files when the server is running,.

11.3.1 ServerPrefs.xml configuration file

Edit the ServerPrefs.xml file in the silfide/preference directory and set the following attributes appro-
priately :

<pref name="status" value="online"/>

server status : should not be modified.

<pref name="name" value="no-name"/>

server name or sid : this is the server's identification reference on the network. It must be uni-
que in the network and registered on the NMU. Please contact the NMU administrator before to
set this attribute.

<pref name="nmua" value="godefroy.loria.fr"/>

address of the NMU server. Should not be modified but on NMU administrator request.

The ELAN Server installation manual

68

<pref name="nmup" value="1130"/>

port of the NMU server. Should not be modified but on NMU administrator request.

<pref name="driver" value="fr.loria.silfide.driver.QueryHandlerEmptyImpl"/>

ELAN driver name : modify this to provide access to your site driver. Note that your CLASS-
PATH variable must contain a path to the driver.

<pref name="namingContext" value="ELAN"/>

the naming context to be used to connect on the NMU. (should not be changed)

<pref name=’nmuConnectMode’ value=’corba’/>

protocol to be used to connect to the NMU. Can be either "corba" to connect directly or "udp" to
use the udp gateway.

<pref name=’broadcastTimeout’ value=’3’/>

this attribute specifies the time-out (in minutes) the broadcastServlet will use when contacting a
resource server. After this delay, the connection will be cancelled.

<pref name=’serverPort’ value=’8888’/>

specify here the port your server will use. This value must match the silver.port property in the httpd.pro-
perties file.

<pref name=’guestAccess’ value=’yes’/>

should be "yes" if you want to allow guest connections to your server.

A user-friendly configuration tool...

MLIS - ELAN 69

12 A user-friendly configuration tool...

In the silfide/bin directory, launch ./admin to start the configuration tool. Its purpose is to edit the dif-
ferent properties and configuration files. Note that you shouldn't modify any properties but those
described in this document.

You can edit a property by double clicking on its key or value. You should then be able to edit it and
validate your changes by hitting the return key. Note that for some properties, you cannot modify the
key. Sometimes you wont be able to add or remove any properties from the file, but only edit the
actual properties values.

The interface is basically made of tables displaying the properties from the various files, and acces-
sible through tabs.

Some buttons allow the administrator to add and remove properties, and validate the modifications :

• Add : add a new property to the file. You must enter the key and value of the new property in the
new line that will appear in the table.

• Remove : remove the selected property from the file.

• Apply : validate the modifications and save them in the property file. Note that for the modifica-
tions to take effect, you must restart the server.

Below are some screen shots of the administration tool :

Figure 12. Edition of the ServerPrefs.xml file

The ELAN Server installation manual

70

Figure 13. Edition of the httpd.properties file. The "silver.root" property is selected. Only the
"silver.root", "silver.port" and "silver.admin.email" properties should be modified

Starting the server...

MLIS - ELAN 71

13 Starting the server...

Go to the silfide/bin directory and launch the "server" or "server.bat" script, respectively on Unix and
Windows systems. you should see something like:

XSILFIDE_ROOT=./../..

Initializing HttpServer...

Silver (version 0.32) , serving at http://godefroy.loria.fr:8888/

HttpServer is running...

The ELAN Server installation manual

72

14 Testing...

You should be able to see the server's homepage at http://server.where.com:port where
"server.where.con" is the address of your server and "port" the port you decided to use.

You can use any Swing enabled browser to connect to the homepage and launch the applet either
as a guest or a registered user.

If you dont have a swing enabled browser, you can launch the ELAN client either as an applet using
the AppletViewer tool or an application.

To connect with the applet as a guest :

appletviewer http://server.where.com:8888/servlets/ConnectServlet

To connect with the applet as a registered user :

appletviewer "http://server.where.com:8888/servlets/ConnectSer-
vlet? LOGIN=login_name&PASSWD=asasasasasasasa"

To connect using the application :

java fr.loria.silfide.client.WorkspaceApplication

you will have to provide the server address, a login name and a password. Leave the login and
password fields blanks to connect as a guest.

-or-

java fr.loria.silfide.client.WorkspaceApplication server_url
login_name password

MLIS - ELAN 73

The ELAN common query
language (CQL)

Deliverable D3.3-1

Project Number MLIS-121

Project Title European Language Activity Network (ELAN)

Deliverable Number D3.3-1

Work Package ID WP3

Contractual date of delivery to EU t0+9

Actual date of delivery to EU 30 November 1998

Deliverable Title The ELAN common query language (CQL)

Authors Peter van der Kamp & Pieter Masereeuw, INL, Leiden

The ELAN common query language (CQL)

74

15 Foreword

The CQL described in this document can be regarded as a maximum model. Although all the soft-
ware partners involved with implementing the CQL will do the utmost to be completely compatible
with the described CQL, small differences between the partners can remain. These differences are
due to the use of pre-existing software brought into the ELAN project. Differences are described in
the user documentation.

Introduction

MLIS - ELAN 75

16 Introduction

This document describes the ELAN Common Query Language (CQL).

16.1 What is the ELAN Common Quer y Langua ge and wh y is it
needed?

The ELAN project aims to make parts of the PAROLE and TELRI corpora available for retrieval via
the Internet. For various reasons, it was decided not to create a new retrieval system. Instead, exist-
ing systems had to be reused in the context of the ELAN project. A number of institutions has been
found willing to cooperate in the process of making their corpus retrieval software available for this
purpose.

The existing systems have more or less comparable functionalities; however, they differed in the way
in which the user had to interact with them - i.e., formulate queries, perform statistical tests, view out-
put. ELAN aims to overcome these differences by realizing a common query language and a com-
mon user interface by using standard components. The common user interface will be based on
Java and Internet browser technology, esp. the Netscape Navigator and Microsoft Internet Explorer
platforms.

For this user interface to be able to "speak" to the various retrieval engines, a common language has
to be defined. The language that will translate the ELAN query language into the command syntax
for the various query systems is called the ELAN Common Query Language .

The institutions that make their retrieval engines available for use within the context of ELAN are:

1. LORIA UMR 7503 CNRS, INRIA & Universités de Nancy

2. University of Birmingham, Department of English, School of Humanities, Birmingham, United
Kingdom

3. CNR - Istituto di Linguistica Computazionale, Pisa, Italy

4. Instituut voor Nederlandse Lexicologie (Institute for Dutch Lexicology), Leiden, The Nether-
lands

16.2 Design objectives

The design objectives for the ELAN Common Query Language are:

1. simplicity - the language should be easy to use

2. power - the language should allow non-trivial queries, like adjacency queries, part-of-speech que-
ries, boolean combinations and so on

3. if there is a conflict between the power concept and the simplicity concept, simplicity wins

4. implementability - it should be possible to translate CQL expressions into the local query format
of all ELAN retrieval systems

5. even being easy to use, the language should permit the creation of a wizard-like interface that
helps the user formulate a query - in some circumstances even a simple language requires some
special notation, for instance when looking for:

part-of-speech tags (PoS tags)

words separated by a given number of other words

The ELAN common query language (CQL)

76

discrimination between uppercase and lowercase characters

SGML markup

etc.

6. the language should support hierarchically structured documents, marked up with SGML

7. this support of SGML should not be dominant - users unaware of markup should not be forced to
think about it, let alone be confronted with SGML.

Despite the identical user interface and common query language, different concepts in the various
retrieval program may cause subtle differences in query results. For instance, the Leiden approach is
based on retrieving sets of phrases (Leiden jargon for paragraphs or sentences), whereas, e.g., the
Birmingham approach is based on retrieving positions in the corpus where the match is found. One
of the consequences of the Leiden approach is that searching for words will never cross phrase
boundaries: where the Birmingham system silently crosses such boundaries during the match, the
Leiden system will not. This can, in some circumstances, result in different output.

Components of the ELAN Common Query Language

MLIS - ELAN 77

17 Components of the ELAN Common Query
Language

In this section we will discuss:

The context of a query

Features supported in the ELAN Common Query Language

Query syntax

Before we describe the features and the syntax of the language, we will provide list of example que-
ries. We hope that this will make the rest of this document easier to read.

 Find all occurrences ofreal example
real example

 Find some forms of theverb ski
ski | skies | skiing | skied & V

 Find some forms of theverb sky near anoun from the listball, &painting or picture
(wherenear means:within a distance of 5 words to the left or the right):

sky | skies | skied | skying & V 5:5 picture | painting |
ball & N

 Find questions (trick: search a question mark at the end of a sentence):
? </S>

 Find all words that start with house:
house*

 Advanced: regular expression search -color or colour
 regex(colou?r)

 Advanced: combining case-sensitive and case-insensitive matching (note: normally, case
sensitivity applies for the whole query, and is a feature selectable in the user interface) - the
Nobel Prize for linguistics or Linguistics (or LINGUISTICS, etc.)

 caseless(linguistics) 3:3 Nobel Prize

17.1 The conte xt of a quer y

A query is always made within a certain context. For an ELAN query, this context consists of:

 corpus selection.

The corpus to be queried, or a subset of a corpus

 type of the query.

contextual (e.g., concordance lines)

statistical (miscore, t-score)

 parameters relevant for the given query type, e.g.:

case-sensitivity of the query (default is case sensitive matching, a lowercase

a does not match an uppercase A)

output parameters for the concordance lines

type of statistical test to be performed

 optional header query .

The ELAN common query language (CQL)

78

The header query operates on the TEI headers of each document in the selected corpus. If there
is a match, the document corresponding to the TEI header is included in the corpus to be queried
by the text query (see below); if there is no match, the corresponding document will be excluded.

If no header query is present, the entire (sub)corpus selection will be used.

More on header queries in section 3.1 below.

 text query.

The text query performs the actual query. It operates on the documents defined by the corpus
selection, possibly modified by the header query. The processing of the results depends on the
type of the query: either output is sent back to the user, or statistical tables are generated on
which the statistical test can further operate.

When the user wants to perform a query, the entire context will be passed from the client in the
web browser to the servers defined for the given corpus selection. The context will be represen-
ted in the form of an XML Document Type Definition (DTD), a draft version of which is given in
Appendix A.

17.2 Features suppor ted in the ELAN Common Quer y Langua ge

In this paragraph we will discuss the features that are supported in the ELAN Common Query Lan-
guage. In order to keep things simple, we do not include the actual syntax here; the actual notation
will be discussed in the next paragraph.

The ELAN Common Query Language will provide the following features:

single-word expression.

Single-word expressions correspond with one word, word-plus-PoS-code or SGML tag in the cor-
pus. A single-word expression can be:

word expression.

A word expression is used to search the corpus for a word or a combination of a part-of-
speech tag and a word :

Words are defined as:

* literal word. A literal string that represents a word or punctuation .

* wildcard. Wildcard searching makes it possible to specify that certain parts of a word (tag,
etc) can consist of arbitrary characters, for instance, hous * would select all words that start
with hous . Wildcard characters can be used any number of times anywhere in a word.

* list of alternative words. E.g., searching for the word house or houses

* function. Each ELAN server will define a set of functions. The effect of the functions is the
same as searching for a list of alternative words (the preceding option). In fact, one might
say that a function is substituted by a list of alternatives, as defined by the function and its
parameters. Functions may help the user by automatically generating lists of alternative
words. An obvious example is the generation of all inflected forms of a given stem.

Each server will at least support the following two functions:

caseless()

The result is the list of all alternatives of its arguments. For example, if the preceding sen-
tence were the corpus, caseless(the) would be a list consisting of The and the. The
caseless() function may be abbreviated to case() .

Components of the ELAN Common Query Language

MLIS - ELAN 79

The argument of caseless() is interpreted as if it were a literal word or a wildcard.
Hence, caseless(*ily) will match all words ending in ily, uppercase as well as lower-
case.

regex()

The result will be a list with all words in the current corpus selection that match the regular
expression string passed as argument. The regular expression string will need to match
from the start of a word upto its end. For instance, the result of regex([Tt]h.) could
be a list consisting of The, the, Tho, tho, Thy and thy. The result will not contain words like
ethic or than.

If the user has indicated that the overall setting for the query is to match case-insensiti-
vely, the regex() function will also be case-insensitive.

The regular expression variant to be used will be Unix-style regular expressions.

Combinations of a part-of-speech tags and a word are used to search for a combination
of a word and a PoS tag. It is not possible to search for the combination of a word and an
SGML tag (see below), or for the combination of an SGML tag and a PoS tag. It is possible
to search for a PoS tag only - i.e., a PoS tag corresponding to an arbitrary word.

PoS searches consist of a word , a PoS operator and a PoS tag .

Instead of a word one can also use one of the alternatives listed above (wildcards, lists of
alternative words, functions).

The PoS operators are:

* and. The and operator indicates that the second operand should also match on the same
position in the corpus as the first operand. A typical application of the and operator would
be a word with a certain PoS tag.

The and operator specifies that the word or words to the left of the operator should be
below a <W> SGML tag whose attribute matches one of the PoS tags that are to the right
of the operator.

* and not. The and not operator inverts the effect of the and operator: if the and operator
would match, the and not operator will fail, and vice versa.

A PoS tag is a morphosyntactic tag as defined for the Parole corpus. Like a word, a PoS tag
can be:

- a sequence of characters that together constitute the start of a PoS tag.

- a wildcard that will match the start of a PoS tag (wildcards for PoStags have the same
notation as those for words)

- a list of alternative tags (also using the same notation as for words)

Matching behaviour for PoS tags will be different than that of words: where a word (or word
wildcard) must match entire words in the corpus, PoS tags (or PoS wildcards) only need to
match the start of PoS tags in the corpus. This definition was done for convenience,
because the Parole tags are to a large extent hierarchically structured with the leftmost cha-
racter being most significant. Thus, the user can ask for a PoS V (for verb), without having to
worry about any other characters that may follow.

SGML tag.

If the corpus supports SGML tags, they can be queried. SGML tags can be expressed as:

* a literal string. A tag that complies with SGML conventions

* a wildcard. In SGML tags, wildcards are only allowed in the attribute values, not in tag
names or attribute names.

The ELAN common query language (CQL)

80

If any attributes are given within an SGML tag, the order in which they are given is irrelevant for
the match. An SGML tag in the corpus that has more attributes than specified in the query
expression will match nevertheless.

All matching is case sensitive, unless a global property of the query is changed. This property
can be changed within the user interface and will be passed to the server as one of the parame-
ters of the query context as described in section 2.1.

multiple-word expression.

Multiple-word expressions are combinations of the single-word expressions defined above.

juxtaposition. Two single-word expressions next to each other in the expression specify that a
match should be found in the corpus where these words (tags, etc.) are adjacent. Words are
adjacent if the first word is immediately to the left of the second word, where any intervening
tags are ignored (but intervening punctuation is not ignored).

span . The span operator indicates that two multiple-word expressions should occur within a
given distance from each other. The span operator can specify the size of the distance and
whether the expressions should occur in a left-to-right order or in any order.

If SGML tags are used among the multiple-word expressions, there will be no attempt to make
sure that an open SGML tag and a closing tag belong to each other. If matching tags are required
in the expression, refer to the section about hierarchy expressions (below).

Hierarchy expression.

Given the fact that many corpus texts to be supported in ELAN are heavily tagged with the TEI
tagging system, the CQL provides a means to combine a search for words with a search for the
hierarchical structure of these documents. For instance, one may search for a word that is below
a TEI <HEAD> tag. Users may formulate their searches in terms of words and tags, but apart
from that, they may also want to express that some hierarchical relation between the tags should
exist.

Hierarchy expressions find an important application in the area of header queries. For example,
the user may want to select documents published in1995 by searching for a <DATE> tag that is
below a <PUBLICATIONSTMT> tag, where the string 1995 is found within the domain governed
by the <DATE> tag.

Due to conceptual differences, the Leiden server will have restrictions for text queries that search
for word combinations that cross the boundaries of a phrase (e.g., a paragraph) or the header.

17.3 Quer y syntax

The full syntax of query expressions is described in appendix B.

In this paragraph, we will provide the actual notation for the features that were discussed in section
2.2.

Between words and operators, all whitespace (blanks, spaces, tabs) is ignored.

single-word expression.

Single-word expressions are word expressions (including part-of-speech tags) and SGML tags.
PoS tags can only occur in combination with words (or with the * wildcard, which stands for any
word)

word expression. A word expression is a literal word, a wildcard, a list of alternative words or a
function that represents such a list of words.

Components of the ELAN Common Query Language

MLIS - ELAN 81

* word.

literal word

for CQL purposes, a word is defined as a sequence of non-blank characters, with the
exception of the following special characters:

& means and (see below)

~& means and not (see below).

| means or (see below)

: part of span operator

< and > delimit SGML tags

(and) mark functions; also reserved for future use (hierarchy expressions)

" and ' used for quoted words and quoted function parameters (see below)

^ Reserved for future use (in hierarchy expressions)

Searching character entities, like é for é, is not supported. Instead, all characters
should be entered in their Unicode (ISO 10646) representation (wysiwyg (what you see is
what you get): users need not bother with character entities, they only work with real printa-
ble character). Unicode characters will match the corresponding character entities in the
corpus data. The user interface will somehow have to provide a facility for easily entering
special characters.

Examples of literal words:

cat

dog

élan

Note that the original CQL definition had no facility to enter a word between single or double
quotes. Quotes were mainly introduced in order to make it easier to enter special regular
expression characters in the regex() function. Other uses of quoted strings are their for
reasons of orthogonality.

wildcard

The following wildcard characters are also special, but may be part of a word, where they
have a special interpretation:

_ (underscore) matches an arbitrary character

* matches zero or more arbitrary characters. An * by itself means: any word.

\ makes the following character not-special, eg. \&,_ or \\.

Examples of wildcards:
* any word
un* words starting with un
*able words ending in able
un*ily words starting with un and ending in ily
AT\&T The AT&T company

quoted words

If a literal word or wildcard contains many special characters, it is more convenient to enter
them within quotes. Within quotes, all special characters mentioned above (under literal
word) become not-special. However, the wildcard characters (_, * and \, see above) keep
their wildcard interpretation.

The ELAN common query language (CQL)

82

The user may use single quotes as well as double quotes - the only requirement is that the
start and the end of the string have the same quote. Within double quoted strings, single
quotes can be freely entered; likewise, a single quoted string may contain double quotes.
For a detailed discussion, see Appendix C.

Examples of quoted words and wildcards:

* "I'm". same as I\'m

* '2.5"'. 2.5 inch; same as 2.5\"

* "AT&T". same as AT\&T

* I'*. Words starting with I', same as I\'*

* '***-hotel'. same as ***-hotel - probably not a hotel where you want to go with four little
children

* '\'', "\"". even the absurd may be entered

list of alternative words

A list of alternative words consists of literal words, quoted words and/or wildcards, separated
by a vertical bar character |.

Examples of alternatives:

house | houses

*ity | *ness

function

A function consists of a name followed by a number of parameters. The parameters are
given between round parenthesis and are separated by commas. The name of the function
is a sequence of unaccented letters in the ascii range defined by a..z and A..Z. The paren-
theses should follow the name without intervening whitespace. Function names and para-
meters are case sensitive. Function parameters are made of any characters, except
whitespace, commas and round parentheses. If necessary, these should be escaped with a
back slash \. Alternatively, and perhaps more conveniently, function parameters may be
enclosed within quotes. In that case, the same rules apply as for quoted words, with the dif-
ference that functions define their own interpretation of parameters (e.g., case-
less("wh*") matches all words starting with wh, Wh, WH, wH, while regex("wh*") will
match words like w, wh, whh, and so on). See Appendix C for a description of the interpreta-
tion of function arguments.

Examples of functions:

flex(house)

This would (perhaps, depending on the corpus) be equivalent to the list house | houses.
Note that a server need not necessarily have a flex() function; depending on the lan-
guage, a server may offer different variants of flex() in order to deal with language-specific
phenomena.

regex("[aeiouy]+")

This would be equivalent to the list of words that consist only of vowels. Note that
regex([aeiouy]+) is allowed as well, since none of the characters is special.

caseless(house)

Components of the ELAN Common Query Language

MLIS - ELAN 83

This would (perhaps, depending on the corpus) be equivalent to the list of all lowercase
and uppercase variants of the word house, e.g. house | House | HOUSE .

regex("koning(in)?")

Matches the Dutch words koning (king) and koningin (queen). Note that you can't write
this as regex(koning\(in\)?) (as this would match the 'words' koning(in and koning(in) -
note: parentheses are correct!

* combination of a word and a part-of-speech tag.

part-of-speech operator

The PoS operators are:
& for the and operator
~& for the and not operator

Examples of the use of PoS operators:
walk & V : The word walk with a PoS tag that starts with V

(verb)
* & N : Any noun
flex(house) & N : All inflected forms of the stem house that

have a PoS tag starting with N (note: the flex() function is example-only)

part-of-speech tag

A PoS tag obeys to the same rules as a word. For convenience, a PoS tag is implicitly
extended with a * wildcard character. This was done for convenience, so that the user can
enter

walk & N

if the PoS tag for walk really is something like Ncfs-- .

Instead of a PoS tag, one may also use:

- a wildcard. Wildcard characters in PoS tags obey the same rules as those for words.

- a quoted word (See above)

- a list of alternative PoS tags. A list of alternaive PoS tags has the same format as a list of
alternative words.

Examples of somewhat elaborate use of PoS tags:
dictionary & N_[-m*][sp]
The word dictionary with a tag N, followed by any character, etc,
* & A | R
Any word with a PoS tag starting with A or R.

SGML tag.

An SGML tag is enclosed within angle brackets < and >. The normal SGML notation applies,
so, for instance, a slash / following the < indicates a closing tag.

Within attribute values, the wildcard characters _ * and \ have the same interpretation as within
words. Wildcard characters are not allowed within element or attribute names.

multiple-word expression.

Multiple-word expressions are combinations of the single-word expressions defined above.

juxtaposition.

Two single-word expressions can be combined by putting them next to each other, with interve-
ning whitespace.

The ELAN common query language (CQL)

84

Examples of juxtaposition:

central heating

* &A * &A * &N : two adjectives followed by a noun

span.

The span operator will match the single-word or juxtapositional expressions that surround it.
The syntax of the query language forbids more than one span operator in an expression. This
was decided in order to prevent a combinatorial explosion when translating the ELAN Common
Query Language to the local format.

A span operator consists of two numbers separated by a colon :. The span operator operates
on two sequences of one or more words - one sequence to the left (SL) and one sequence to
the right (SR). The numbers in the span operator define the distance between SL and SR in
words. The distance between two words is defined as follows: if all words in a text are numbe-
red, the distance of two words is the number of the rightmost word minus the number of the
leftmost word. This implies that two adjacent words have a distance of 1 and that a distance of
0 is not possible between two words.

the first number of the span operator defines the distance between SL and SR if SR is posi-
tioned to the left of SL

the second number defines the distance between SL and SR if SR is positioned to the right
of SL

As an example, the query draws attention is identical to the query draws 0:1 atten-
tion .

When counting intervening words, SGML tags are disregarded; punctuation is counted as
words.

Note: the exact definition of word and punctuation will be defined by the tokenization strategy
of each Elan server - this implies that there may be some variation between servers.

Examples of a span:

draws 1:3 attention would match:
draws attention
draws my attention
draws his sister's attention
attention draws

 but not:

draws more than my attention (the distance between draws and attention
is 4, not 3)

attention and draws (distance is 2, not 1)

Hierarchy expression.

During the development of the CQL, all partners agreed about the features of the CQL. Also,
notational issues were for the largest part agreed upon. However, a consensus about the syntaxis
of hierarchy expressions has not been reached. Two notations have been proposed, one by Lei-
den and one by Birmingham. Rather than discussing the two approaches in detail, we will try to
show the difference by means of a number of relevant examples. A final choice still has to be
made, where, among others, aspects like notational comfort will have to be taken into account.

Components of the ELAN Common Query Language

MLIS - ELAN 85

TABLE 1.

Description Leiden notation Birmingham notation

The name Lubbers within a <HEAD> tag <HEAD>(Lubbers) Lubbers within(HEAD)

The word premier followed by Lubbers within a
<HEAD> tag

<HEAD>(premier Lubbers) premier Lubbers within(HEAD)

Searching for an italic word between other
words, e.g. "at the bank"

at <HI rend=IT>(the) bank at (the within(HI,rend=IT)) bank

Looking for certain question-answer patterns: a
sentence that contains a ?, followed by a
second sentence with the word yes, followed
by a third sentence that also contains a ?

<S>(? ^)
<S>(yes)
<S>(? ^)
Note: ^ anchors to the end

?within(S)
(</S>within(S)yes)
? within(S)

Header query: select all freely available docu-
ments with source date 1992

<PUBLICA-
TIONSTMT>
(
<AVAILABILITY STA-
TUS=FREE>
)
<SOURCE-
DESC>
(
<DATE>(1992)
)

(

<AVAILABILITY STA-
TUS=FREE>

 within(PUBLICATIONSTMT)

) within(TEIHEADER)

(

1992

within(DATE)
within(SOURCE-
DESC)
)

The ELAN common query language (CQL)

86

18 Processing CQL queries

18.1 Text queries and header queries - what the y do and ho w
the y cooperate

Queries are applied to a set of corpora or subcorpora available on one or more ELAN servers. The
user defines this set by selecting from a list of available corpora. This list is composed from the cor-
pora and subcorpora available at all ELAN servers for which the user is authorized.

For some applications, users may want to further refine the selection made from the standard list.
For instance, the granularity of the list may allow selection of newspapers published in a given year,
but the user wants to limit his domain to all articles written on fridays (perhaps because at that day
papers always have articles from a certain category).

In order to do so, the user can query the TEI header of the various documents in the selected corpus
- this is done by so-called header queries. If a header matches the user's query, the document to
which the header belongs is included in the current subcorpus selection. Of course, documents of
headers that don't match are excluded.

It will be clear that the effect of header queries and text queries is different:

header queries select documents

text queries select a context - say, a concordance line - in the corpus

Nevertheless, the query language for both queries is identical. This is because both header and con-
tent are made up with SGML tags. Of course, the header query facility will not be available for docu-
ments that do not have a header. Likewise, text queries on documents without SGML markup will not
be able to specify SGML tags, PoS tags (which are represented as SGML tags) and hierarchy
expressions.

18.2 Glue

A full description of context in which text queries and header queries are transmitted to an ELAN
server (which may broadcast edited copies of them to other ELAN servers) is outside the scope of
this document. Nevertheless, in order to obtain an understanding on how an ELAN server will proc-
ess a query, a few words need to be said about it.

The ELAN user interface will wrap the user's text query (and the optional header query) in an XML
document - this is transparent to the user, it's just part of the protocol by which the client (user inter-
face) and the server talk to each other. This document will also contain other information - for details,
please refer to section 2.1.

Part of the entries in the XML document is the kind of operation that is to be performed - type of the
query in section 2.1. The following types have currently been envisaged:

output a set of concordance lines (context size will also be specified in XML terms). The format of
the output will be an XML document that the user interface understands sothat it can do format-
ting and highlighting in the user interface.

output a table with statistical information (type of statistical test and parameters will also be sup-
plied). This table, formatted as an XML document, will be formatted by the user interface

output larger context given a certain id (the id corresponds to a position in the corpus)

output a list of words matching a given regular expression

output the frequency of a given word, also given a certain (sub)corpus selection.

Processing CQL queries

MLIS - ELAN 87

Part of the protocol will originate from the server instead of from the user interface - for instance, if a
corpus selection spans corpora that are distributed over several servers, one server will be responsi-
ble for merging the results coming from other servers. As another example, in order to do statistical
computations, the responsible server may need to know the frequency of a word and ask that to the
appropriate server.

The surrounding protocol has not yet been fully established. For example, the client may request that
certain concordance lines are removed from the result set (filtering). A user may want to do that
once it becomes apparent that a query contains several easily identifiable examples that are beside
the point and would disturb statistics. Filtering the output may be more convenient that rephrasing
the query.

Issues like this are part of the surrounding protocol and not part of the CQL proper.

The ELAN common query language (CQL)

88

MLIS - ELAN 89

Server hardware and
software requirements

Deliverable D3.3-2

Project Number MLIS-121

Project Title European Language Activity Network (ELAN)

Deliverable Number D3.3-2

Work Package ID WP3

Contractual date of delivery to EU t0+9

Actual date of delivery to EU 30 November 1998

Deliverable Title Server hardware and software requirements

Authors Peter van der Kamp & Pieter Masereeuw, INL, Leiden

Server hardware and software requirements

90

19 Introduction

This document describes the hardware and software requirements for ever site in order to act as a
server within ELAN.

Requirements

MLIS - ELAN 91

20 Requirements

20.1 General requirements

Independent of the situations described in paragraph 2.2, Specific requirements, the following gen-
eral requirements apply to act as a server within ELAN.

8. fast connection to Internet, not based on modem or comparable technology

9. running an appropriate http-daemon (e.g.Apache), configured to accept servlets

10. running a Java Virtual Machine, compliant with the specifications of Java Development Kit (JDK)
1.1, in order to run servlets

11. the format of the data to be accessed should be level zero (no markup) or TEI DTD compliant.

20.2 Specific requirements

With respect to the specific requirements, two situations can be distinguished.

1. The site has its own corpus retrieval software

In this case the only specific requirement is that the provider must be able to interface the ELAN
CQL with its local query engine.

2. The site has no corpus retrieval software

In this case the specific requirements depend on the corpus exploitation software to be installed:

Leiden software:

Leiden software:

For precompiled binaries:

At least a SUN UltraSparc I, 128 Mb memory and free disk space of at least twice the size of the
corpus. Operating system: Sun Solaris 2.6 or higher.

If the software has to be built for the provider’s equipment:

Unix operating system

Unix Make utility or (preferred) GNU make 3.77

GNU egcs compiler release 1.0.3. The version can be checked with the g++ --version com-
mand. The answer should be egcs-2.90.29 980515 (egcs-1.0.3 release)

GNU gcc 2.8.1 can also be used.

GNU Bison 1.25

Flex 2.5.4

Java Development Kit 1.1.8 or higher

James Clark sgml norm

Birmingham software

For precompiled binaries:

No specific machine required as long as it is equipped with as much memory as possible.

At least Java Development Kit 1.1

Server hardware and software requirements

92

Storage requirements are about 75% of the original corpus file size for non-annotated material,
and about 80% for annotated XML files.

If the software has to be built for the provider's equipment:

Not applicable, as JAVA binaries are delivered.

Pisa software

For precompiled binaries

At least a Pentium II-300 with 64Mb and free disk space of at least twice the size of the corpus.
Operating Systems: Windows NT or Windows 95/98

If the software has to be built for the provider's equipment:

Java Development Kit 1.1 or better

MultiLingual Information Society

Appendix

Appendix

94

MLIS - ELAN 95

A. JDK Supported Encoding

JDK Software Release: 1.1.x

The InputStreamReader, OutputStreamWriter, and String classes can convert between Unicode and
the following set of character encodings:

Character Encoding Description

ASCII ASCII

ISO8859_1 ISO8859_1

ISO8859_2 ISO8859_2

ISO8859_3 ISO8859_3

ISO8859_4 ISO8859_4

ISO8859_5 ISO8859_5

ISO8859_6 ISO8859_6

ISO8859_7 ISO8859_7

ISO8859_8 ISO8859_8

ISO8859_9 ISO8859_9

Big5 Big5, Traditional Chinese

Cp037 USA, Canada(Bilingual, French), Netherlands, Portugal, Brazil, Australia

Cp1006 IBM AIX Pakistan (Urdu)

Cp1025 IBM Multilingual Cyrillic: Bulgaria, Bosnia, Herzegovinia, Macedonia(FYR)

Cp1026 IBM Latin-5, Turkey

Cp1046 IBM Open Edition US EBCDIC

Cp1097 IBM Iran(Farsi)/Persian

Cp1098 IBM Iran(Farsi)/Persian (PC)

Cp1112 IBM Latvia, Lithuania

Cp1122 IBM Estonia

Cp1123 IBM Ukraine

Cp1124 IBM AIX Ukraine

Cp1250 Windows Eastern European

Cp1251 Windows Cyrillic

Cp1252 Windows Latin-1

Cp1253 Windows Greek

Cp1254 Windows Turkish

Cp1255 Windows Hebrew

Appendix

96

Cp1256 Windows Arabic

Cp1257 Windows Baltic

Cp1258 Windows Vietnamese

Cp1381 IBM OS/2, DOS People's Republic of China (PRC)

Cp1383 IBM AIX People's Republic of China (PRC)

Cp273 IBM Austria, Germany

Cp277 IBM Denmark, Norway

Cp278 IBM Finland, Sweden

Cp280 IBM Italy

Cp284 IBM Catalan/Spain, Spanish Latin America

Cp297 IBM France

Cp33722 IBM-eucJP - Japanese (superset of 5050)

Cp420 IBM Arabic

Cp424 IBM Hebrew

Cp437 MS-DOS United States, Australia, New Zealand, South Africa

Cp500 EBCDIC 500V1

Cp737 PC Greek

Cp775 PC Baltic

Cp838 IBM Thailand extended SBCS

Cp850 MS-DOS Latin-1

Cp852 MS-DOS Latin-2

Cp855 IBM Cyrillic

Cp857 IBM Turkish

Cp860 MS-DOS Portuguese

Cp861 MS-DOS IcELANdic

Cp862 PC Hebrew

Cp863 MS-DOS Canadian French

Cp864 PC Arabic

Cp865 MS-DOS Nordic

Cp866 MS-DOS Russian

Cp868 MS-DOS Pakistan

Cp869 IBM Modern Greek

Cp870 IBM Multilingual Latin-2

Cp871 IBM IcELANd

Cp874 IBM Thai

Character Encoding Description

MLIS - ELAN 97

Cp875 IBM Greek

Cp918 IBM Pakistan(Urdu)

Cp921 IBM Latvia, Lithuania (AIX, DOS)

Cp922 IBM Estonia (AIX, DOS)

Cp930 Japanese Katakana-Kanji mixed with 4370 UDC, superset of 5026

Cp933 Korean Mixed with 1880 UDC, superset of 5029

Cp935 Simplified Chinese Host mixed with 1880 UDC, superset of 5031

Cp937 Traditional Chinese Host miexed with 6204 UDC, superset of 5033

Cp939 Japanese Latin Kanji mixed with 4370 UDC, superset of 5035

Cp942 Japanese (OS/2) superset of 932

Cp948 OS/2 Chinese (Taiwan) superset of 938

Cp949 PC Korean

Cp950 PC Chinese (Hong Kong, Taiwan)

Cp964 AIX Chinese (Taiwan)

Cp970 AIX Korean

EUC_CN GB2312, EUC encoding, Simplified Chinese

EUC_JP JIS0201, 0208, 0212, EUC Encoding, Japanese

EUC_KR KS C 5601, EUC Encoding, Korean

EUC_TW CNS11643 (Plane 1-3), T. Chinese, EUC encoding

GBK GBK, Simplified Chinese

ISO2022CN ISO 2022 CN, Chinese

ISO2022CN_CNS CNS 11643 in ISO-2022-CN form, T. Chinese

ISO2022CN_GB GB 2312 in ISO-2022-CN form, S. Chinese

ISO2022JP JIS0201, 0208, 0212, ISO2022 Encoding, Japanese

ISO2022KR ISO 2022 KR, Korean

JIS0201 JIS 0201, Japanese

JIS0208 JIS 0208, Japanese

JIS0212 JIS 0212, Japanese

KOI8_R KOI8-R, Russian

MS874 Windows Thai

MacArabic Macintosh Arabic

MacCentralEurope Macintosh Latin-2

MacCroatian Macintosh Croatian

MacCyrillic Macintosh Cyrillic

MacDingbat Macintosh Dingbat

Character Encoding Description

Appendix

98

MacGreek Macintosh Greek

MacHebrew Macintosh Hebrew

MacIcELANd Macintosh IcELANd

MacRoman Macintosh Roman

MacRomania Macintosh Romania

MacSymbol Macintosh Symbol

MacThai Macintosh Thai

MacTurkish Macintosh Turkish

MacUkraine Macintosh Ukraine

SJIS Shift-JIS, Japanese

UTF8 UTF-8

Character Encoding Description

MLIS - ELAN 99

B. The ELAN Workspace DTD

<!-- DOCTYPE ws [-->

<!-- === -->

<!-- Silfide : Work Space -->

<!-- Auteur : Patrice Bonhomme, 06 Jan 1999 -->

<!-- === -->

<!--

 PUBLIC

 "-//Silfide//DTD SIL Work Space 0.5 Draft 19990106//EN"

-->

<!ELEMENT ws (prefs,basket+,servers,histos?)>

<!ATTLIST ws crdate CDATA #IMPLIED

 update CDATA #IMPLIED>

<!ELEMENT prefs (pref*)>

<!ELEMENT pref EMPTY>

<!ATTLIST pref name CDATA #REQUIRED

 value CDATA #REQUIRED>

<!ELEMENT basket (resource*)>

<!ATTLIST basket name CDATA #REQUIRED>

<!-- name : name of the database ??? -->

<!ELEMENT resource EMPTY>

<!ATTLIST resource idno CDATA #REQUIRED

 sid CDATA #REQUIRED>

<!-- href : hypertext reference URL/URI -->

<!-- key : index key in the database -->

<!ELEMENT servers (server*)>

<!ELEMENT server EMPTY>

<!ATTLIST server sid CDATA #REQUIRED>

<!ELEMENT histos (histo*)>

<!ELEMENT histo EMPTY>

<!ATTLIST histo n CDATA #IMPLIED

 date CDATA #IMPLIED>

<!-- date :a date in ISO standard form (yyyy-mm-dd) -->

<!--]> -->

Appendix

100

C. A simple workspace instance

<sil type="workspace" version="0.5" sid="loria">

<uid type="user">

<login id="chris"/>

<passwd></passwd>

<access>

<default group="guest"/>

</access>

</uid>

<ws>

<prefs>

<pref value="yes" name="AutoSave"/><pref value="fr" name="lang"/>

<pref value="0" name="MinutesSave"/><pref value="yes" name="EndSave"/>

<pref value="last" name="StartBasket"/>

</prefs>

<basket name="ressources de birmingham">

<resource idno="Elan-LOB" label="Elan-Corpus sample 1" idType="subcorpus"

description="Test Corpus for ELAN" sid="birmingham" size="1188240"/>

</basket>

<basket name="mes resources">

<resource idno="Elan-LOB" label="Elan-Corpus sample 1" idType="subcorpus"

description="Test Corpus for ELAN" sid="birmingham" size="1188240"/>

<resource idno="/xuapar/data/validated/book.ankhher/vidal.val"

title="Spectrum van regressie en reïncarnatie"

author="Henry de Vidal de St . Germain"

comments="no" sid="leiden" language="Dutch" size="unknown"/>

</basket>

<basket name="new"/>

<basket name="resources de leiden">

<resource idno="/xuapar/data/validated/book.ankhher/liekens.val"

title="NLP en spirituele ontwikkeling"

author="Paul Liekens" comments="no" sid="leiden" language="Dutch"

size="unknown"/>

<resource idno="/xuapar/data/merged/jnljun95.selected_for_elan"

title="NOS Journaal juni 1995" author="anonymous"

comments="no" sid="leiden" language="Dutch" size="unknown"/>

<resource idno="/xuapar/data/merged/jnljul95.selected_for_elan"

title="NOS Journaal juli 1995" author="anonymous"

comments="no" sid="leiden" language="Dutch" size="unknown"/>

</basket>

<servers>

<server sid="godefroy"/>

MLIS - ELAN 101

<server sid="leiden"/>

</servers>

<histos/>

</ws>

</sil>

Appendix

102

D. SIL DTD

<!-- DOCTYPE sil [-->

<!--

 Silfide Interface Language DTD

 Version 0.5

 Draft: Thu Jan 7 22:22:57 MET 1999

 Author: Patrice Bonhomme

-->

<!-- Typical usage:

 <!DOCTYPE sil SYSTEM "http://www.loria.fr/projets/XSilfide/dtd/sil.dtd">

 <sil>

 ...

 </sil>

-->

<!-- SIL Module declaration -->

<!ENTITY % SIL.ws SYSTEM "ws.dtd">

<!-- PUBLIC "-//Silfide//DTD SIL Work Space 0.5 Draft 19990106//EN" -->

<!-- SYSTEM "http://www.loria.fr/projets/XSilfide/dtd/ws.dtd" -->

%SIL.ws;

<!ENTITY % SIL.ui SYSTEM "ui.dtd">

<!-- PUBLIC "-//Silfide//DTD SIL User Information 0.5 Draft 19990106//EN" -->

<!-- SYSTEM "http://www.loria.fr/projets/XSilfide/dtd/ui.dtd" -->

%SIL.ui;

<!ENTITY % SIL.ql SYSTEM "ql.dtd">

<!-- PUBLIC "-//Silfide//DTD SIL Query Language 0.5 Draft 19990106//EN" -->

<!-- SYSTEM "http://www.loria.fr/projets/XSilfide/dtd/ql.dtd" -->

%SIL.ql;

<!ENTITY % SIL.rs SYSTEM "rs.dtd">

<!-- PUBLIC "-//Silfide//DTD SIL Result Set 0.5 Draft 19990106//EN" -->

<!-- SYSTEM "http://www.loria.fr/projets/XSilfide/dtd/rs.dtd" -->

%SIL.rs;

MLIS - ELAN 103

<!-- SIL extensions default declaration -->

<!ENTITY % SIL.x.dtd '' >

%SIL.x.dtd;

<!ENTITY % SIL.x.ent '' >

%SIL.x.ent;

<!-- SIL extension element names -->

<!ENTITY % SIL.x.e ''>

<!-- SIL extension attribute names -->

<!ENTITY % SIL.x.a ''>

<!-- SIL module element names -->

<!ENTITY % SIL.module.e '%SIL.x.e; ws | ui | ql | rs'>

<!-- SIL module attribute names -->

<!ENTITY % SIL.module.a ''>

<!-- SIL Document structure -->

<!ELEMENT sil (uid, (%SIL.module.e;)+)>

<!ATTLIST sil type (%SIL.x.a; workspace | user | query | resultset) "workspace"

 crdate CDATA #IMPLIED

 update CDATA #IMPLIED

 lang CDATA #IMPLIED

 sid CDATA #REQUIRED

 version CDATA #FIXED "0.5">

<!-- lang : [RFC1766] language value

 sid : Silfide server identification -->

<!-- =================== -->

<!-- User IDentification -->

<!-- =================== -->

<!-- validated by the Silfide server admin. -->

<!ELEMENT uid (login, passwd, access)>

<!ATTLIST uid type (user | provider | both) "user">

Appendix

104

<!ELEMENT login EMPTY>

<!ATTLIST login id ID #REQUIRED>

<!ELEMENT passwd (#PCDATA)>

<!ELEMENT access (default,group*)>

<!ELEMENT default EMPTY>

<!ATTLIST default group IDREF #IMPLIED>

<!-- cross reference to a <group id="..."> element -->

<!ELEMENT groupEMPTY>

<!ATTLIST groupid ID #REQUIRED>

<!-- id : group identification key : inalf, lingua, etc. -->

<!--]> -->

MLIS - ELAN 105

E. ResultSets DTD

<!-- DOCTYPE rs [-->

<!-- ======================================= -->

<!-- Silfide : Result Set -->

<!-- Auteur : Patrice Bonhomme, 06 Jan 1999 -->

<!-- ======================================= -->

<!--

 PUBLIC

 "-//Silfide//DTD SIL Result Set 0.5 Draft 19990106//EN"

-->

<!ELEMENT rs (meta, result)>

<!ELEMENT result (record)*>

<!ATTLIST result id ID #IMPLIED

 type CDATA#IMPLIED

 content CDATA #IMPLIED>

<!ELEMENT record (#PCDATA | attr)*>

<!ATTLIST record id ID #IMPLIED

 sid CDATA #IMPLIED

 idno CDATA #REQUIRED

 count CDATA #IMPLIED>

Appendix

106

F. A simple Results set instance

<!DOCTYPE sil SYSTEM "sil.dtd">

<sil version="0.5" type="workspace" sid="loria">

 <uid type="user">

 <login id="desaintm"/>

 <passwd>!@#$%^&*&%</passwd>

 <access>

 <default group="inalf"/>

 <group id="inalf"/>

 <group id="greco"/>

 <group id="lingua"/>

 </access>

 </uid>

 <rs>

 <meta>

 <attr name="totalSize">100</attr>

 <attr name="size">10</attr>

 </meta>

 <result type="header">

<record sid="nancy" idno="FRW1"><attr name="title">Le Notaire de Chantilly</
attr><attr name="author">Gozlan, Léon</attr><attr name="language">Français</
attr><attr name="size">141201</attr></record>

 <record sid="nancy" idno="FRW2"><attr name="title">Mademoiselle de la Sei-
gliere</attr><attr name="author">Sandeau, Jules</attr><attr name="language">Fran-
çais</attr><attr name="size">86057</attr></record>

 <record sid="nancy" idno="FRW3"><attr name="title">Histoire Romaine</
attr><attr name="author">Michelet, Jules</attr><attr name="language">Français</
attr><attr name="size">144022 </attr></record>

<record sid="nancy" idno="FRW4"><attr name="title">Récits des temps mérovin-
giens</attr><attr name="author">Thierry, Augustin</attr><attr name="lan-
guage">Français</attr><attr name="size">90232</attr></record>

 <record sid="nancy" idno="FRW5"><attr name="title">Sous les tilleuls</
attr><attr name="author">Karr, Alphonse</attr><attr name="language">Français</
attr><attr name="size">140807</attr></record>

 <record sid="nancy" idno="FRW6"><attr name="title">Le parfum de la dame en
noir</attr><attr name="author">Leroux, Gaston</attr><attr name="language">Fran-
çais</attr><attr name="size">124157</attr></record>

 <record sid="nancy" idno="FRW7"><attr name="title">Le Père Goriot</
attr><attr name="author">Balzac, Honoré de .</attr><attr name="language">Fran-
çais</attr><attr name="size">309234</attr></record>

<record sid="nancy" idno="FRW8"><attr name="title">Contes cruels</attr><attr
name="author">

 Villiers de L’Isle-Adam, Auguste de</attr><attr name="language">Français</
attr><attr name="size">34564</attr></record>

 <record sid="nancy" idno="FRW9"><attr name="title">Une brève histoire du
temps</attr><attr name="author">Hawking, Stephen W.</attr><attr name="lan-
guage">Français</attr><attr name="size">???</attr></record>

MLIS - ELAN 107

 <record sid="nancy" idno="FRW13"><attr name="title">La fiancée d’Achille</
attr><attr name="author">Alki Zeï </attr><attr name="language">Français</
attr><attr name="size">???</attr></record>

 </result>

 </rs>

</sil>

Appendix

108

G. Query DTDs

<!--

 * The MLIS/ELAN DTD

 *

 * Version : 0.21

 * Author : Pieter Masereeuw, Patrice Bonhomme, Samuel Cruz-Lara

 * Date : 1999-05-05

 * Status: By way of experiment, setting the scope for further

 discussions.

 * Changes: the following query types have been modified:

 - concordance type,

 - context type,

 - word list type, and

 - word frequency type.

 We should also note that informations such as the

 name of a server or as the list of the subcorpora

 to be used, are not included in this DTD.

 Instead, this kind of information will be encoded

 into the MIME part of a "query".

 * To do: The list of statistical tests is

 incomplete, as is probably the list with query types.

 *

-->

<!--

 *

 * ELAN CQL DTD - parameter entities

 *

-->

<!ENTITY % contextAttrs

 "left CDATA #IMPLIED

 right CDATA #IMPLIED">

<!ENTITY % contextAttrsRequired

 "left CDATA #REQUIRED

 right CDATA #REQUIRED">

<!--

 Number of context words left/right of center word.

-->

<!--

MLIS - ELAN 109

 *

 * ELAN CQL DTD - elements + attribute lists

 *

-->

<!--

 The following elements define query types.

-->

<!ELEMENT elanQuery

 (concQuery |

 statsQuery |

 contextQuery |

 wordListQuery |

 wordFreqQuery |

 headerQuery)>

<!--

 Introduces a query that returns a set of concordance lines.

 Parameters :

 - optional query header

 - text query

-->

<!ELEMENT concQuery

 (headerQuery?, textQuery)>

<!ATTLIST concQuery %contextAttrs;>

<!--

 Introduces a query that returns a table with statistical

 information, dependent on the type attribute. The

 parameters for the statistical test are given within

 statParam elements.

-->

<!ELEMENT statsQuery

 (headerQuery, textQuery, statParam*)>

<!--

 Type of the statistical test to be performed (not complete,

 actually available tests advertised by local server). Depending

 on the value of the type attribute, zero or more statParam tags

 may follow.

-->

Appendix

110

<!ATTLIST statsQuery

 type (miscore | tscore | zscore) #REQUIRED>

<!--

 Contains a word or other expression that serves as the parameter

 for the statistical test.

-->

<!ELEMENT statParam (#PCDATA)>

<!--

 Gives, where necessary, the type of the parameter, as defined by

 the type of statistical test.

-->

<!ATTLIST statParam

 paramType CDATA #IMPLIED>

<!--

 Introduces a context query.

 Note: no headerQuery and textQuery.

 The IDString is an id by which a server can send back a

 larger context than just a concordance line (the size is

 defined by the left and right attributes). The exact format

 of the id is server-specific; the client can only use values

 that were supplied earlier by the server (for example, as

 hyperlinks/anchors - note that the client should store the

 server name as well as the id. Also note that the

 subcorpora attribute of the (only) <server> tag will be ignored

 - the id should be sufficient. Finally, note that some servers

 (e.g.Leiden) may want the id to contain information about the

 (position of the) server words for the context attributes to be

 meaningful - fortunately,all this stuff is of no concern for the

 client as long as it stores the id.

-->

<!ELEMENT contextQuery

 (IDString)>

<!ELEMENT IDString (#PCDATA)>

<!ATTLIST contextQuery %contextAttrsRequired;>

<!--

 Introduces a word list query type.

 The wildCard contains a regular expression or a CQL expression

MLIS - ELAN 111

 for which all matching words should be returned in a tabular

 format, with or without frequency information. All frequencies

 are given relative to the current (sub)corpus selection.

-->

<!ELEMENT wordListQuery

 (headerQuery?, wildCard)>

<!--

 Format of word list. Default is to return words plus frequency

 information.

-->

<!ATTLIST wordListQuery

 output (word | wordPlusFreq) "wordPlusFreq">

<!--

 A wildCard may be a CQL or a regular expression.

 Does anybody remember in what situation is this word list

 going to be used ???

-->

<!ELEMENT wildCard (#PCDATA)>

<!ATTLIST wildCard

 type (regex | textQuery) #REQUIRED>

<!--

 Note: no textQuery.

 Contains a word for which the frequency is to be returned. The

 frequency is given relative to the current (sub)corpus

 selection.

-->

<!ELEMENT wordFreqQuery

 (headerQuery?, word)>

<!ELEMENT word (#PCDATA)>

<!--

 End of query type elements; start of CQL proper elements.

-->

<!--

 Contents is a CQL expression that uses the TEI header for

 subcorpus selection.

-->

Appendix

112

<!ELEMENT headerQuery (#PCDATA)>

<!--

 Contents is a CQL expression that works on the contents of

 the documents (within <TEXT>). For CDATA see above.

-->

<!ELEMENT textQuery (#PCDATA)>

<!-- ELAN Result Set -->

<!ELEMENT elanResultSet (meta, result)>

MLIS - ELAN 113

H. Sample code of a “fake” QueryHandler driver

/*

 * @(#) QueryHandlerTestImpl.java

 *

 * Copyright 1999 (C) CHRISTOPHE DE SAINT-RAT

 * UMR LORIA (Universities of Nancy, CNRS & INRIA)

 *

 */

package fr.loria.silfide.driver;

import fr.loria.silfide.util.*;

import fr.loria.silfide.query.*;

import fr.loria.silfide.server.prefs.*;

import java.util.Hashtable;

import java.util.Random;

import java.util.Enumeration;

import java.io.StringReader;

import fr.loria.mlis.elan.*;

import fr.loria.xml.DocumentLoader;

import org.w3c.dom.Document;

import org.w3c.dom.Element;

import fr.loria.silfide.sil.*;

/**

 * <code>QueryHandlerTestImpl</code> is a fake ELAN driver implementing

 * the <code>QueryHandler</code> interface. Its purpose is to show how

 * to write a driver. It generates and returns fake results (documents

 * or concordance lines).

 *

 * @version1.0

 * @authorChristophe de Saint-Rat

 */

public class QueryHandlerTestImpl implements QueryHandler

{

 /**

 * list of last names to generate fake authors when generating documents

 */

 private static String tabLastNames[] = {"romary","husson","viscogliosi","bon-
homme","cruz-lara"};

Appendix

114

 /**

 * list of first names to generate fake authors when generating documents

 */

 private static String tabFirstNames[] = {"nadia","jean-luc","patrice","lau-
rent","samuel"};

 /**

 * list of languages to generate fake languages when generating documents

 */

 private static String langues[] = {"francais","allemand","japo-
nais","anglais","espagnol"};

 /**

 * list of words to generate fake results

 */

 private static String mots[] = {"cette","unité","dont","la","créa-
tion","a","été",

 "officialisée","le","19","décembre","1997","par",

 "la","signature","du","contrat","quadriennal","avec",

 "le","ministère","de","l’education","nationale","de",

 "la","recherche","et","de","la","technologie","par",

 "une","convention","entre","les","cinq","partenaires",

 "succède","ainsi","au","centre","de","recherche","en",

 "informatique","de","Nancy","(CRIN)","et","aux",

 "équipes","communes","entre","celui-ci","et","l’unité",

 "de","recherche","INRIA","de","Lorraine"};

 /**

 * number of fake resources to generate

 */

 private static int NB_RESOURCES = 300;

 /**

 * maximum number of resources to be returned at once

 */

 private static int MAX_RETURN = 50;

 /**

 * local server sid

 */

 private String sid;

 /**

 * sessions table

 */

 private Hashtable sessions;

MLIS - ELAN 115

 /**

 * queries table

 */

 private Hashtable queries;

 /**

 * random number generator used to generate the fake results

 */

 private Random rand;

 /**

 * XML document loader

 */

 private DocumentLoader loader;

 /**

 * returns a fake idno

 */

 private String getIdno()

 {

return Long.toString(Math.abs(rand.nextInt()));

 }

 /**

 * returns a fake first name

 */

 private String getFirstName()

 {

int x=(new Double(tabFirstNames.length*Math.abs(rand.nextFloat())).intValue());

if (x>=tabFirstNames.length) x= tabFirstNames.length-1;

return tabFirstNames[x];

 }

 /**

 * returns a fake last name

 */

 private String getLastName()

 {

int x=(new Double(tabLastNames.length*Math.abs(rand.nextFloat())).intValue());

if (x>=tabLastNames.length) x= tabLastNames.length-1;

return tabLastNames[x];

 }

Appendix

116

 /**

 * returns a fake language attribute for the resource

 */

 private String getLangue()

 {

int x=(new Double(langues.length*Math.abs(rand.nextFloat())).intValue());

if (x>=langues.length) x= langues.length-1;

return langues[x];

 }

 /**

 * returns a fake language title for the resource

 */

 private String getTitle()

 {

StringBuffer s=new StringBuffer();

for (int i=0;i<4;i++)

 {

int x=(new Double(mots.length*Math.abs(rand.nextFloat())).intValue());

if (x>=mots.length) x= mots.length-1;

s.append(mots[x]);

s.append(" ");

 }

return s.toString();

 }

 /**

 * returns a fake size attribute for the resource

 */

 private String getTaille()

 {

return Integer.toString(Math.abs(rand.nextInt()));

 }

 /**

 * returns a fake comments attribute for the resource

 */

 private String getCommentaire()

 {

StringBuffer s=new StringBuffer();

for (int i=0;i<20;i++)

 {

MLIS - ELAN 117

int x= (new Double(mots.length*Math.abs(rand.nextFloat())).intValue());

if (x>=mots.length) x= mots.length-1;

s.append(mots[x]);

s.append(" ");

 }

return s.toString();

 }

 /**

 * creates and returns a new fake resource with all attributes in a hashTable

 */

 private Hashtable getNewResource()

 {

Hashtable h = new Hashtable();

h.put("idType","document");

h.put("title",getTitle());

h.put("author",getFirstName()+" "+getLastName());

h.put("language",getLangue());

h.put("size",getTaille());

h.put("comments",getCommentaire());

return h;

 }

 /**

 * instanciation of the new driver and initialization

 */

 public QueryHandlerTestImpl()

 {

ServerPrefs prefs = new ServerPrefs();

sid = prefs.getPref("name");

rand = new Random(System.currentTimeMillis());

sessions = new Hashtable();

queries = new Hashtable();

loader = new DocumentLoader();

 }

 /**

 * perform a new query with no associated basket (usually a header query)

 *

 * @paramsessionIDthe session ID of the new query

 * @paramquerythe query as a SIL document XML string

 */

 public ElanResultSet executeQuery(String sessionID, String query)

Appendix

118

 {

// decoding of the query

AbstractElanQuery eq=null;

String qh="";

try

 {

 // instanciation of a reader to read the query string sequentially

 StringReader sr = new StringReader(query);

 // instanciation of a new SIL document processor

 SILProcessor sp = new SILProcessor();

 // creation of an XML Document corresponding to the XML string

 Document se = loader.loadDocument(sr);

 // parsing of the XML document

 SIL sil = sp.process(se);

 // extraction of the ElanQuery part of the SIL document

 eq = (AbstractElanQuery)sil.getModule();

 switch(eq.getQueryType()) // gets the query type

{

case ElanQuery.QUERY_HEADER:

 qh = eq.getHeaderQuery(); // gets the header query text

 break;

case ElanQuery.QUERY_CONC:

case ElanQuery.QUERY_CONTEXT:

case ElanQuery.QUERY_STATS:

case ElanQuery.QUERY_WORDFREQ:

case ElanQuery.QUERY_WORDLIST:

 qh = eq.getTextQuery(); // gets the content query text (CQL)

 break;

default:

 qh = "";

}

 System.out.println("got Query from : "+sil.getUserID().getLogin());

 }

catch(Exception e)

 {

 System.out.println("query parsing error : "+e.toString());

 }

Integer icpt = new Integer(0);

sessions.put(sessionID,icpt);

int cpt = 0;

if (!"getAvailableCorpora".equals(qh))

MLIS - ELAN 119

 {

// returns documents references that match the query

// create a new result set object

ElanResultSetImpl rsp = new ElanResultSetImpl(new Meta(),new Result());

// sets the total number of documents matching the query

rsp.setTotalSize(NB_RESOURCES);

// add each individual documents references to the result set

for(int i=0;i<MAX_RETURN && cpt<NB_RESOURCES;i++)

 {

// add a document (sid+idno) + a list of display attributes

rsp.addRecord(sid,getIdno(),null,getNewResource());

cpt++;

 }

sessions.put(sessionID,new Integer(cpt));

if (eq!=null) queries.put(sessionID,eq);

return rsp;

 }

else

 {

// returns all available sub-corpora.

// if you do not support this feature, you should return an identifier

// for your whole corpus

ElanResultSetImpl rsp = new ElanResultSetImpl(new Meta(),new Result());

rsp.setTotalSize(1);

Hashtable corpora = new Hashtable();

corpora.put("idType","subcorpus");

corpora.put("label","all corpora");

corpora.put("description","the complete "+sid+"’s corpus");

corpora.put("size","1000000");

rsp.addRecord(sid,"allCorpora",null,corpora);

sessions.put(sessionID,new Integer(cpt));

if (eq!=null) queries.put(sessionID,eq);

return rsp;

 }

 }

 /**

 * perform a new query with an associated basket (usually a content query)

 *

Appendix

120

 * @paramsessionIDthe session ID of the new query

 * @paramquerythe query as a SIL document XML string

 * @parambasketthe basket as a SILBasket document XML string

 */

 public ElanResultSet executeQuery(String sessionID, String query, String bas-
ket)

 {

// System.out.println(query);

// System.out.println("-------------------------------");

// System.out.println(basket);

AbstractElanQuery eq=null;

String qh="";

try

 {

 StringReader sr = new StringReader(query);

 SILProcessor sp = new SILProcessor();

 Document se = loader.loadDocument(sr);

 SIL sil = sp.process(se);

 eq = (AbstractElanQuery)sil.getModule();

 switch(eq.getQueryType())

{

case ElanQuery.QUERY_HEADER:

 qh = eq.getHeaderQuery(); // gets the header query text

 break;

case ElanQuery.QUERY_CONC:

case ElanQuery.QUERY_CONTEXT:

case ElanQuery.QUERY_STATS:

case ElanQuery.QUERY_WORDFREQ:

case ElanQuery.QUERY_WORDLIST:

 qh = eq.getTextQuery(); // gets the content query text (CQL)

 break;

default:

 qh = "";

}

 System.out.println("got Query from : "+sil.getUserID().getLogin());

 }

catch(Exception e)

 {

 System.out.println("query parsing error : "+e.toString());

 }

// decoding of the basket

try

 {

MLIS - ELAN 121

// instanciation of a reader to read the basket string sequentially

StringReader sr = new StringReader(basket);

// creation of an XML Document corresponding to the XML string

Document sbd = loader.loadDocument(sr);

// extraction of the root element from the basket document

Element sbe = sbd.getDocumentElement();

// parsing of the basket element

Basket sb = SILBasket.process(sbe);

// extraction of the basket resources

for (Enumeration en = sb.getResources();en.hasMoreElements();)

 {

Resource r = (Resource)en.nextElement();

String r_sid = r.getSid();

if (r_sid.equals(sid)) // verify if the resource is on this local server

 {

String idno = r.getIdno(); // gets the resource identifier

 }

 }

 }

catch(Exception e)

 {

 System.out.println("basket parsing error : "+e.toString());

 }

Integer icpt = new Integer(0);

sessions.put(sessionID,icpt);

int cpt = 0;

ElanResultSetImpl rsp = new ElanResultSetImpl(new Meta(),new Result());

rsp.setTotalSize(NB_RESOURCES);

Hashtable htres = new Hashtable();

for(int i=0;i<MAX_RETURN && cpt<NB_RESOURCES;i++)

 {

// rsp.addRecord(sid,getIdno(),qh+" "+sessionID+" "+cpt);

htres.put("leftContext",getCommentaire());

htres.put("node",qh);

htres.put("rightContext",getCommentaire());

htres.put("info",sessionID+" "+cpt);

rsp.addRecord(sid,getIdno(),null,htres);

cpt++;

htres.clear();

 }

Appendix

122

sessions.put(sessionID,new Integer(cpt));

if (eq!=null) queries.put(sessionID,eq);

return rsp;

 }

 /**

 * ask for the next results of the former query identified my sessionID

 *

 * @paramsessionIDthe session ID of the former query

 */

 public ElanResultSet next(String sessionID)

 {

Integer icpt = (Integer)sessions.get(sessionID);

if (icpt==null) return null;

int cpt = icpt.intValue();

if (cpt>=NB_RESOURCES) return null;

ElanResultSetImpl rsp = new ElanResultSetImpl(new Meta(),new Result());

rsp.setTotalSize(NB_RESOURCES);

String query=null;

ElanQuery eq = null;

try

 {

 eq = (ElanQuery)queries.get(sessionID);

 if (eq!=null)

{

 switch(eq.getQueryType())

 {

 case ElanQuery.QUERY_HEADER:

query = eq.getHeaderQuery();

break;

 case ElanQuery.QUERY_CONC:

 case ElanQuery.QUERY_CONTEXT:

 case ElanQuery.QUERY_STATS:

 case ElanQuery.QUERY_WORDFREQ:

 case ElanQuery.QUERY_WORDLIST:

query = eq.getTextQuery();

break;

 default:

query = "";

 }

}

MLIS - ELAN 123

 }

catch(Exception e) {}

if (ElanQuery.QUERY_HEADER==eq.getQueryType())

 for(int i=0;i<MAX_RETURN && cpt<NB_RESOURCES;i++)

{

 rsp.addRecord(sid,getIdno(),null,getNewResource());

 cpt++;

}

else

 for(int i=0;i<MAX_RETURN && cpt<NB_RESOURCES;i++)

{

 rsp.addRecord(sid,getIdno(),query+" "+sessionID+" "+cpt);

 cpt++;

}

sessions.put(sessionID,new Integer(cpt));

return rsp;

 }

 /**

 * close the session identified by sessionID

 *

 * @paramsessionIDthe session ID of the former query

 */

 public void close(String sessionID)

 {

if (sessions.containsKey(sessionID))

 sessions.remove(sessionID);

if (queries.containsKey(sessionID))

 queries.remove(sessionID);

 }

}

//EOF QueryHandlerTestImpl

Appendix

124

I. General communication model between servers in the
ELAN Network

MLIS - ELAN 125

ElanQueryHandler

sessionID
queryServlet

ElanQueryHandler

sessionID
queryServlet

ElanQueryHandler

sessionID
queryServlet

BroadcastServlet

sessionID

cache

connection

statement

resultset (Enumeration)

User Applet

sessionID

cache

connection

statement

resultset (Enumeration)

sessionID

cache

connection

statement

resultset (Enumeration)

sessionID

cache

connection

statement

resultset (Enumeration)

Super Resultset

	The ELAN Architecture 7
	1 Introduction 9
	1.1 Scope 9
	1.2 User in mind 9
	1.3 Objectives 9
	2 General network organisation 11
	2.1 A decentralized network - rationale 11
	2.2 A user interface - friendly 11
	2.3 And the users 12
	3 User client (Deliverable 3.1.1) 13
	3.1 Introduction 13
	3.2 ELAN main services 13
	3.2.1 Connection to a local server 13
	3.2.2 User identification 14
	3.2.3 User registration 14
	3.2.4 Client environment and interface 14
	3.3 Technical requirements and implementation 17
	3.3.1 XML for data and message encoding 17
	3.3.2 Software requirements 20
	3.4 Statistical tests 21
	3.4.1 Introduction and trade-offs 21
	3.4.2 From the client side 22
	3.4.3 From the local server side 22
	3.4.4 From the remote server side 22
	3.4.5 The protocol retained within ELAN 22
	3.4.6 Implementation 23
	4 Organisation on the ELAN network (Deliverable 3.2.1) 24
	4.1 Organisation 24
	4.2 Clients, Servers and NMU communication 25
	4.2.1 Servlets 25
	4.2.2 CORBA 26
	4.3 The Network Management Unit (NMU) 28
	4.3.1 Role of the NMU 28
	4.3.2 NMU / SERVERS communication 28
	4.3.3 IDL Description 29
	4.3.4 Firewalls 30
	4.4 Server-side organisation 31
	4.4.1 Introduction 31
	4.4.2 Protocols and languages used in ELAN 32
	4.4.3 General Scenario 32
	4.4.4 APIs 35
	4.4.5 The ELAN driver 36
	4.4.6 Driver installation 39
	4.5 Security Aspects 40
	4.5.1 Introduction 40
	4.5.2 Connecting to the ELAN Network as a registered user 40
	4.5.3 Securing access to the NMU 41
	4.5.4 Securing Server-Server communications 42
	The ELAN Client user's guide 45
	5 Introduction 47
	6 Connection to a server 48
	6.1 Connection through the applet 48
	6.2 Connection with the client application 49
	7 The Workspace 50
	8 The User Interface 51
	8.1 The welcome Panel 51
	8.2 Selection of servers 51
	8.3 Selection of resources 52
	8.3.1 Header queries (selection of documents) 52
	8.3.2 Get all corpora query 54
	8.3.3 Documents selection 55
	8.4 The tools panel 57
	8.4.1 Concordances queries 57
	8.5 The preferences panel 58
	8.6 The i/o panel 59
	The ELAN Server installation manual 61
	9 Required components 63
	10 The XSilfide archive 64
	11 Installation 66
	11.1 Environment variables 66
	11.2 Silver HTTP server configuration 66
	11.2.1 httpd.properties configuration 66
	11.2.2 other properties files 66
	11.3 ELAN server configuration 67
	11.3.1 ServerPrefs.xml configuration file 67
	12 A user-friendly configuration tool... 69
	13 Starting the server... 71
	14 Testing... 72
	The ELAN common query language (CQL) 73
	15 Foreword 74
	16 Introduction 75
	16.1 What is the ELAN Common Query Language and why is it needed? 75
	16.2 Design objectives 75
	17 Components of the ELAN Common Query Language 77
	17.1 The context of a query 77
	17.2 Features supported in the ELAN Common Query Language 78
	17.3 Query syntax 80
	18 Processing CQL queries 86
	18.1 Text queries and header queries - what they do and how they cooperate 86
	18.2 Glue 86
	Server hardware and software requirements 89
	19 Introduction 90
	20 Requirements 91
	20.1 General requirements 91
	20.2 Specific requirements 91
	Appendix 93
	A. JDK Supported Encoding 95
	B. The ELAN Workspace DTD 99
	C. A simple workspace instance 100
	D. SIL DTD 102
	E. ResultSets DTD 105
	F. A simple Results set instance 106
	G. Query DTDs 108
	H. Sample code of a “fake” QueryHandler driver 113
	I. General communication model between servers in the ELAN Network 124
	1 Introduction
	1.1 Scope
	1.2 User in mind
	1.3 Objectives

	2 General network organisation
	2.1 A decentralized network - rationale
	2.2 A user interface - friendly
	2.3 And the users

	3 User client (Deliverable 3.1.1)
	3.1 Introduction
	3.2 ELAN main services
	3.3 Technical requirements and implementation
	3.4 Statistical tests

	4 Organisation on the ELAN network (Deliverable 3.2.1)
	4.1 Organisation
	4.2 Clients, Servers and NMU communication
	4.3 The Network Management Unit (NMU)
	4.4 Server-side organisation
	4.5 Security Aspects

	5 Introduction
	6 Connection to a server
	6.1 Connection through the applet
	6.2 Connection with the client application

	7 The Workspace
	8 The User Interface
	8.1 The welcome Panel
	8.2 Selection of servers
	8.3 Selection of resources
	8.4 The tools panel
	8.5 The preferences panel
	8.6 The i/o panel

	9 Required components
	10 The XSilfide archive
	11 Installation
	11.1 Environment variables
	11.2 Silver HTTP server configuration
	11.3 ELAN server configuration

	12 A user-friendly configuration tool...
	13 Starting the server...
	14 Testing...
	15 Foreword
	16 Introduction
	16.1 What is the ELAN Common Query Language and why is it needed?
	16.2 Design objectives

	17 Components of the ELAN Common Query Language
	17.1 The context of a query
	17.2 Features supported in the ELAN Common Query Language
	17.3 Query syntax

	18 Processing CQL queries
	18.1 Text queries and header queries - what they do and how they cooperate
	18.2 Glue

	19 Introduction
	20 Requirements
	20.1 General requirements
	20.2 Specific requirements

	A. JDK Supported Encoding
	B. The ELAN Workspace DTD

	<!-- DOCTYPE ws [-->
	<!-- === -->
	<!-- Silfide : Work Space -->
	<!-- Auteur : Patrice Bonhomme, 06 Jan 1999 -->
	<!-- === -->
	<!--
	PUBLIC
	"-//Silfide//DTD SIL Work Space 0.5 Draft 19990106//EN"
	-->
	<!ELEMENT ws (prefs,basket+,servers,histos?)>
	<!ATTLIST ws crdate CDATA #IMPLIED
	update CDATA #IMPLIED>
	<!ELEMENT prefs (pref*)>
	<!ELEMENT pref EMPTY>
	<!ATTLIST pref name CDATA #REQUIRED
	value CDATA #REQUIRED>
	<!ELEMENT basket (resource*)>
	<!ATTLIST basket name CDATA #REQUIRED>
	<!-- name : name of the database ??? -->
	<!ELEMENT resource EMPTY>
	<!ATTLIST resource idno CDATA #REQUIRED
	sid CDATA #REQUIRED>
	<!-- href : hypertext reference URL/URI -->
	<!-- key : index key in the database -->
	<!ELEMENT servers (server*)>
	<!ELEMENT server EMPTY>
	<!ATTLIST server sid CDATA #REQUIRED>
	<!ELEMENT histos (histo*)>
	<!ELEMENT histo EMPTY>
	<!ATTLIST histo n CDATA #IMPLIED
	date CDATA #IMPLIED>
	<!-- date :a date in ISO standard form (yyyy-mm-dd) -->
	<!--]> -->
	C. A simple workspace instance

	<sil type="workspace" version="0.5" sid="loria">
	<uid type="user">
	<login id="chris"/>
	<passwd></passwd>
	<access>
	<default group="guest"/>
	</access>
	</uid>
	<ws>
	<prefs>
	<pref value="yes" name="AutoSave"/><pref value="fr" name="lang"/>
	<pref value="0" name="MinutesSave"/><pref value="yes" name="EndSave"/>
	<pref value="last" name="StartBasket"/>
	</prefs>
	<basket name="ressources de birmingham">
	<resource idno="Elan-LOB" label="Elan-Corpus sample 1" idType="subcorpus"
	description="Test Corpus for ELAN" sid="birmingham" size="1188240"/>
	</basket>
	<basket name="mes resources">
	<resource idno="Elan-LOB" label="Elan-Corpus sample 1" idType="subcorpus"
	description="Test Corpus for ELAN" sid="birmingham" size="1188240"/>
	<resource idno="/xuapar/data/validated/book.ankhher/vidal.val"
	title="Spectrum van regressie en reïncarnatie"
	author="Henry de Vidal de St . Germain"
	comments="no" sid="leiden" language="Dutch" size="unknown"/>
	</basket>
	<basket name="new"/>
	<basket name="resources de leiden">
	<resource idno="/xuapar/data/validated/book.ankhher/liekens.val"
	title="NLP en spirituele ontwikkeling"
	author="Paul Liekens" comments="no" sid="leiden" language="Dutch"
	size="unknown"/>
	<resource idno="/xuapar/data/merged/jnljun95.selected_for_elan"
	title="NOS Journaal juni 1995" author="anonymous"
	comments="no" sid="leiden" language="Dutch" size="unknown"/>
	<resource idno="/xuapar/data/merged/jnljul95.selected_for_elan"
	title="NOS Journaal juli 1995" author="anonymous"
	comments="no" sid="leiden" language="Dutch" size="unknown"/>
	</basket>
	<servers>
	<server sid="godefroy"/>
	<server sid="leiden"/>
	</servers>
	<histos/>
	</ws>
	</sil>
	D. SIL DTD

	<!-- DOCTYPE sil [-->
	<!--
	Silfide Interface Language DTD
	Version 0.5
	Draft: Thu Jan 7 22:22:57 MET 1999
	Author: Patrice Bonhomme
	-->
	<!-- Typical usage:
	<!DOCTYPE sil SYSTEM "http://www.loria.fr/projets/XSilfide/dtd/sil.dtd">
	<sil>
	...
	</sil>
	-->
	<!-- SIL Module declaration -->
	<!ENTITY % SIL.ws SYSTEM "ws.dtd">
	<!-- PUBLIC "-//Silfide//DTD SIL Work Space 0.5 Draft 19990106//EN" -->
	<!-- SYSTEM "http://www.loria.fr/projets/XSilfide/dtd/ws.dtd" -->
	%SIL.ws;
	<!ENTITY % SIL.ui SYSTEM "ui.dtd">
	<!-- PUBLIC "-//Silfide//DTD SIL User Information 0.5 Draft 19990106//EN" -->
	<!-- SYSTEM "http://www.loria.fr/projets/XSilfide/dtd/ui.dtd" -->
	%SIL.ui;
	<!ENTITY % SIL.ql SYSTEM "ql.dtd">
	<!-- PUBLIC "-//Silfide//DTD SIL Query Language 0.5 Draft 19990106//EN" -->
	<!-- SYSTEM "http://www.loria.fr/projets/XSilfide/dtd/ql.dtd" -->
	%SIL.ql;
	<!ENTITY % SIL.rs SYSTEM "rs.dtd">
	<!-- PUBLIC "-//Silfide//DTD SIL Result Set 0.5 Draft 19990106//EN" -->
	<!-- SYSTEM "http://www.loria.fr/projets/XSilfide/dtd/rs.dtd" -->
	%SIL.rs;
	<!-- SIL extensions default declaration -->
	<!ENTITY % SIL.x.dtd '' >
	%SIL.x.dtd;
	<!ENTITY % SIL.x.ent '' >
	%SIL.x.ent;
	<!-- SIL extension element names -->
	<!ENTITY % SIL.x.e ''>
	<!-- SIL extension attribute names -->
	<!ENTITY % SIL.x.a ''>
	<!-- SIL module element names -->
	<!ENTITY % SIL.module.e '%SIL.x.e; ws | ui | ql | rs'>
	<!-- SIL module attribute names -->
	<!ENTITY % SIL.module.a ''>
	<!-- SIL Document structure -->
	<!ELEMENT sil (uid, (%SIL.module.e;)+)>
	<!ATTLIST sil type (%SIL.x.a; workspace | user | query | resultset) "workspace"
	crdate CDATA #IMPLIED
	update CDATA #IMPLIED
	lang CDATA #IMPLIED
	sid CDATA #REQUIRED
	version CDATA #FIXED "0.5">
	<!-- lang : [RFC1766] language value
	sid : Silfide server identification -->
	<!-- =================== -->
	<!-- User IDentification -->
	<!-- =================== -->
	<!-- validated by the Silfide server admin. -->
	<!ELEMENT uid (login, passwd, access)>
	<!ATTLIST uid type (user | provider | both) "user">
	<!ELEMENT login EMPTY>
	<!ATTLIST login id ID #REQUIRED>
	<!ELEMENT passwd (#PCDATA)>
	<!ELEMENT access (default,group*)>
	<!ELEMENT default EMPTY>
	<!ATTLIST default group IDREF #IMPLIED>
	<!-- cross reference to a <group id="..."> element -->
	<!ELEMENT group EMPTY>
	<!ATTLIST group id ID #REQUIRED>
	<!-- id : group identification key : inalf, lingua, etc. -->
	<!--]> -->
	E. ResultSets DTD

	<!-- DOCTYPE rs [-->
	<!-- ======================================= -->
	<!-- Silfide : Result Set -->
	<!-- Auteur : Patrice Bonhomme, 06 Jan 1999 -->
	<!-- ======================================= -->
	<!--
	PUBLIC
	"-//Silfide//DTD SIL Result Set 0.5 Draft 19990106//EN"
	-->
	<!ELEMENT rs (meta, result)>
	<!ELEMENT result (record)*>
	<!ATTLIST result id ID #IMPLIED
	type CDATA #IMPLIED
	content CDATA #IMPLIED>
	<!ELEMENT record (#PCDATA | attr)*>
	<!ATTLIST record id ID #IMPLIED
	sid CDATA #IMPLIED
	idno CDATA #REQUIRED
	count CDATA #IMPLIED>
	F. A simple Results set instance

	<!DOCTYPE sil SYSTEM "sil.dtd">
	<sil version="0.5" type="workspace" sid="loria">
	<uid type="user">
	<login id="desaintm"/>
	<passwd>!@#$%^&*&%</passwd>
	<access>
	<default group="inalf"/>
	<group id="inalf"/>
	<group id="greco"/>
	<group id="lingua"/>
	</access>
	</uid>
	<rs>
	<meta>
	<attr name="totalSize">100</attr>
	<attr name="size">10</attr>
	</meta>
	<result type="header">
	<record sid="nancy" idno="FRW1"><attr name="title">Le Notaire de Chantilly</ attr><attr name="aut...
	<record sid="nancy" idno="FRW2"><attr name="title">Mademoiselle de la Seigliere</attr><attr name=...
	<record sid="nancy" idno="FRW3"><attr name="title">Histoire Romaine</ attr><attr name="author">Mi...
	<record sid="nancy" idno="FRW4"><attr name="title">Récits des temps mérovingiens</attr><attr name...
	<record sid="nancy" idno="FRW5"><attr name="title">Sous les tilleuls</ attr><attr name="author">K...
	<record sid="nancy" idno="FRW6"><attr name="title">Le parfum de la dame en noir</attr><attr name=...
	<record sid="nancy" idno="FRW7"><attr name="title">Le Père Goriot</ attr><attr name="author">Balz...
	<record sid="nancy" idno="FRW8"><attr name="title">Contes cruels</attr><attr name="author">
	Villiers de L’Isle-Adam, Auguste de</attr><attr name="language">Français</ attr><attr name="size"...
	<record sid="nancy" idno="FRW9"><attr name="title">Une brève histoire du temps</attr><attr name="...
	<record sid="nancy" idno="FRW13"><attr name="title">La fiancée d’Achille</ attr><attr name="autho...
	</result>
	</rs>
	</sil>
	G. Query DTDs

	<!--
	* The MLIS/ELAN DTD
	*
	* Version : 0.21
	* Author : Pieter Masereeuw, Patrice Bonhomme, Samuel Cruz-Lara
	* Date : 1999-05-05
	* Status: By way of experiment, setting the scope for further
	discussions.
	* Changes: the following query types have been modified:
	- concordance type,
	- context type,
	- word list type, and
	- word frequency type.
	We should also note that informations such as the
	name of a server or as the list of the subcorpora
	to be used, are not included in this DTD.
	Instead, this kind of information will be encoded
	into the MIME part of a "query".
	* To do: The list of statistical tests is
	incomplete, as is probably the list with query types.
	*
	-->
	<!--
	*
	* ELAN CQL DTD - parameter entities
	*
	-->
	<!ENTITY % contextAttrs
	"left CDATA #IMPLIED
	right CDATA #IMPLIED">
	<!ENTITY % contextAttrsRequired
	"left CDATA #REQUIRED
	right CDATA #REQUIRED">
	<!--
	Number of context words left/right of center word.
	-->
	<!--
	*
	* ELAN CQL DTD - elements + attribute lists
	*
	-->
	<!--
	The following elements define query types.
	-->
	<!ELEMENT elanQuery
	(concQuery |
	statsQuery |
	contextQuery |
	wordListQuery |
	wordFreqQuery |
	headerQuery)>
	<!--
	Introduces a query that returns a set of concordance lines.
	Parameters :
	- optional query header
	- text query
	-->
	<!ELEMENT concQuery
	(headerQuery?, textQuery)>
	<!ATTLIST concQuery %contextAttrs;>
	<!--
	Introduces a query that returns a table with statistical
	information, dependent on the type attribute. The
	parameters for the statistical test are given within
	statParam elements.
	-->
	<!ELEMENT statsQuery
	(headerQuery, textQuery, statParam*)>
	<!--
	Type of the statistical test to be performed (not complete,
	actually available tests advertised by local server). Depending
	on the value of the type attribute, zero or more statParam tags
	may follow.
	-->
	<!ATTLIST statsQuery
	type (miscore | tscore | zscore) #REQUIRED>
	<!--
	Contains a word or other expression that serves as the parameter
	for the statistical test.
	-->
	<!ELEMENT statParam (#PCDATA)>
	<!--
	Gives, where necessary, the type of the parameter, as defined by
	the type of statistical test.
	-->
	<!ATTLIST statParam
	paramType CDATA #IMPLIED>
	<!--
	Introduces a context query.
	Note: no headerQuery and textQuery.
	The IDString is an id by which a server can send back a
	larger context than just a concordance line (the size is
	defined by the left and right attributes). The exact format
	of the id is server-specific; the client can only use values
	that were supplied earlier by the server (for example, as
	hyperlinks/anchors - note that the client should store the
	server name as well as the id. Also note that the
	subcorpora attribute of the (only) <server> tag will be ignored
	- the id should be sufficient. Finally, note that some servers
	(e.g.Leiden) may want the id to contain information about the
	(position of the) server words for the context attributes to be
	meaningful - fortunately,all this stuff is of no concern for the
	client as long as it stores the id.
	-->
	<!ELEMENT contextQuery
	(IDString)>
	<!ELEMENT IDString (#PCDATA)>
	<!ATTLIST contextQuery %contextAttrsRequired;>
	<!--
	Introduces a word list query type.
	The wildCard contains a regular expression or a CQL expression
	for which all matching words should be returned in a tabular
	format, with or without frequency information. All frequencies
	are given relative to the current (sub)corpus selection.
	-->
	<!ELEMENT wordListQuery
	(headerQuery?, wildCard)>
	<!--
	Format of word list. Default is to return words plus frequency
	information.
	-->
	<!ATTLIST wordListQuery
	output (word | wordPlusFreq) "wordPlusFreq">
	<!--
	A wildCard may be a CQL or a regular expression.
	Does anybody remember in what situation is this word list
	going to be used ???
	-->
	<!ELEMENT wildCard (#PCDATA)>
	<!ATTLIST wildCard
	type (regex | textQuery) #REQUIRED>
	<!--
	Note: no textQuery.
	Contains a word for which the frequency is to be returned. The
	frequency is given relative to the current (sub)corpus
	selection.
	-->
	<!ELEMENT wordFreqQuery
	(headerQuery?, word)>
	<!ELEMENT word (#PCDATA)>
	<!--
	End of query type elements; start of CQL proper elements.
	-->
	<!--
	Contents is a CQL expression that uses the TEI header for
	subcorpus selection.
	-->
	<!ELEMENT headerQuery (#PCDATA)>
	<!--
	Contents is a CQL expression that works on the contents of
	the documents (within <TEXT>). For CDATA see above.
	-->
	<!ELEMENT textQuery (#PCDATA)>
	<!-- ELAN Result Set -->
	<!ELEMENT elanResultSet (meta, result)>
	H. Sample code of a “fake” QueryHandler driver

	/*
	* @(#) QueryHandlerTestImpl.java
	*
	* Copyright 1999 (C) CHRISTOPHE DE SAINT-RAT
	* UMR LORIA (Universities of Nancy, CNRS & INRIA)
	*
	*/
	package fr.loria.silfide.driver;
	import fr.loria.silfide.util.*;
	import fr.loria.silfide.query.*;
	import fr.loria.silfide.server.prefs.*;
	import java.util.Hashtable;
	import java.util.Random;
	import java.util.Enumeration;
	import java.io.StringReader;
	import fr.loria.mlis.elan.*;
	import fr.loria.xml.DocumentLoader;
	import org.w3c.dom.Document;
	import org.w3c.dom.Element;
	import fr.loria.silfide.sil.*;
	/**
	* <code>QueryHandlerTestImpl</code> is a fake ELAN driver implementing
	* the <code>QueryHandler</code> interface. Its purpose is to show how
	* to write a driver. It generates and returns fake results (documents
	* or concordance lines).
	*
	* @version 1.0
	* @author Christophe de Saint-Rat
	*/
	public class QueryHandlerTestImpl implements QueryHandler
	{
	/**
	* list of last names to generate fake authors when generating documents
	*/
	private static String tabLastNames[] = {"romary","husson","viscogliosi","bonhomme","cruz-lara"};
	/**
	* list of first names to generate fake authors when generating documents
	*/
	private static String tabFirstNames[] = {"nadia","jean-luc","patrice","laurent","samuel"};
	/**
	* list of languages to generate fake languages when generating documents
	*/
	private static String langues[] = {"francais","allemand","japonais","anglais","espagnol"};
	/**
	* list of words to generate fake results
	*/
	private static String mots[] = {"cette","unité","dont","la","création","a","été",
	"officialisée","le","19","décembre","1997","par",
	"la","signature","du","contrat","quadriennal","avec",
	"le","ministère","de","l’education","nationale","de",
	"la","recherche","et","de","la","technologie","par",
	"une","convention","entre","les","cinq","partenaires",
	"succède","ainsi","au","centre","de","recherche","en",
	"informatique","de","Nancy","(CRIN)","et","aux",
	"équipes","communes","entre","celui-ci","et","l’unité",
	"de","recherche","INRIA","de","Lorraine"};
	/**
	* number of fake resources to generate
	*/
	private static int NB_RESOURCES = 300;
	/**
	* maximum number of resources to be returned at once
	*/
	private static int MAX_RETURN = 50;
	/**
	* local server sid
	*/
	private String sid;
	/**
	* sessions table
	*/
	private Hashtable sessions;
	/**
	* queries table
	*/
	private Hashtable queries;
	/**
	* random number generator used to generate the fake results
	*/
	private Random rand;
	/**
	* XML document loader
	*/
	private DocumentLoader loader;
	/**
	* returns a fake idno
	*/
	private String getIdno()
	{
	return Long.toString(Math.abs(rand.nextInt()));
	}
	/**
	* returns a fake first name
	*/
	private String getFirstName()
	{
	int x=(new Double(tabFirstNames.length*Math.abs(rand.nextFloat())).intValue());
	if (x>=tabFirstNames.length) x= tabFirstNames.length-1;
	return tabFirstNames[x];
	}
	/**
	* returns a fake last name
	*/
	private String getLastName()
	{
	int x=(new Double(tabLastNames.length*Math.abs(rand.nextFloat())).intValue());
	if (x>=tabLastNames.length) x= tabLastNames.length-1;
	return tabLastNames[x];
	}
	/**
	* returns a fake language attribute for the resource
	*/
	private String getLangue()
	{
	int x=(new Double(langues.length*Math.abs(rand.nextFloat())).intValue());
	if (x>=langues.length) x= langues.length-1;
	return langues[x];
	}
	/**
	* returns a fake language title for the resource
	*/
	private String getTitle()
	{
	StringBuffer s=new StringBuffer();
	for (int i=0;i<4;i++)
	{
	int x=(new Double(mots.length*Math.abs(rand.nextFloat())).intValue());
	if (x>=mots.length) x= mots.length-1;
	s.append(mots[x]);
	s.append(" ");
	}
	return s.toString();
	}
	/**
	* returns a fake size attribute for the resource
	*/
	private String getTaille()
	{
	return Integer.toString(Math.abs(rand.nextInt()));
	}
	/**
	* returns a fake comments attribute for the resource
	*/
	private String getCommentaire()
	{
	StringBuffer s=new StringBuffer();
	for (int i=0;i<20;i++)
	{
	int x= (new Double(mots.length*Math.abs(rand.nextFloat())).intValue());
	if (x>=mots.length) x= mots.length-1;
	s.append(mots[x]);
	s.append(" ");
	}
	return s.toString();
	}
	/**
	* creates and returns a new fake resource with all attributes in a hashTable
	*/
	private Hashtable getNewResource()
	{
	Hashtable h = new Hashtable();
	h.put("idType","document");
	h.put("title",getTitle());
	h.put("author",getFirstName()+" "+getLastName());
	h.put("language",getLangue());
	h.put("size",getTaille());
	h.put("comments",getCommentaire());
	return h;
	}
	/**
	* instanciation of the new driver and initialization
	*/
	public QueryHandlerTestImpl()
	{
	ServerPrefs prefs = new ServerPrefs();
	sid = prefs.getPref("name");
	rand = new Random(System.currentTimeMillis());
	sessions = new Hashtable();
	queries = new Hashtable();
	loader = new DocumentLoader();
	}
	/**
	* perform a new query with no associated basket (usually a header query)
	*
	* @param sessionID the session ID of the new query
	* @param query the query as a SIL document XML string
	*/
	public ElanResultSet executeQuery(String sessionID, String query)
	{
	// decoding of the query
	AbstractElanQuery eq=null;
	String qh="";
	try
	{
	// instanciation of a reader to read the query string sequentially
	StringReader sr = new StringReader(query);
	// instanciation of a new SIL document processor
	SILProcessor sp = new SILProcessor();
	// creation of an XML Document corresponding to the XML string
	Document se = loader.loadDocument(sr);
	// parsing of the XML document
	SIL sil = sp.process(se);
	// extraction of the ElanQuery part of the SIL document
	eq = (AbstractElanQuery)sil.getModule();
	switch(eq.getQueryType()) // gets the query type
	{
	case ElanQuery.QUERY_HEADER:
	qh = eq.getHeaderQuery(); // gets the header query text
	break;
	case ElanQuery.QUERY_CONC:
	case ElanQuery.QUERY_CONTEXT:
	case ElanQuery.QUERY_STATS:
	case ElanQuery.QUERY_WORDFREQ:
	case ElanQuery.QUERY_WORDLIST:
	qh = eq.getTextQuery(); // gets the content query text (CQL)
	break;
	default:
	qh = "";
	}
	System.out.println("got Query from : "+sil.getUserID().getLogin());
	}
	catch(Exception e)
	{
	System.out.println("query parsing error : "+e.toString());
	}
	Integer icpt = new Integer(0);
	sessions.put(sessionID,icpt);
	int cpt = 0;
	if (!"getAvailableCorpora".equals(qh))
	{
	// returns documents references that match the query
	// create a new result set object
	ElanResultSetImpl rsp = new ElanResultSetImpl(new Meta(),new Result());
	// sets the total number of documents matching the query
	rsp.setTotalSize(NB_RESOURCES);
	// add each individual documents references to the result set
	for(int i=0;i<MAX_RETURN && cpt<NB_RESOURCES;i++)
	{
	// add a document (sid+idno) + a list of display attributes
	rsp.addRecord(sid,getIdno(),null,getNewResource());
	cpt++;
	}
	sessions.put(sessionID,new Integer(cpt));
	if (eq!=null) queries.put(sessionID,eq);
	return rsp;
	}
	else
	{
	// returns all available sub-corpora.
	// if you do not support this feature, you should return an identifier
	// for your whole corpus
	ElanResultSetImpl rsp = new ElanResultSetImpl(new Meta(),new Result());
	rsp.setTotalSize(1);
	Hashtable corpora = new Hashtable();
	corpora.put("idType","subcorpus");
	corpora.put("label","all corpora");
	corpora.put("description","the complete "+sid+"’s corpus");
	corpora.put("size","1000000");
	rsp.addRecord(sid,"allCorpora",null,corpora);
	sessions.put(sessionID,new Integer(cpt));
	if (eq!=null) queries.put(sessionID,eq);
	return rsp;
	}
	}
	/**
	* perform a new query with an associated basket (usually a content query)
	*
	* @param sessionID the session ID of the new query
	* @param query the query as a SIL document XML string
	* @param basket the basket as a SILBasket document XML string
	*/
	public ElanResultSet executeQuery(String sessionID, String query, String basket)
	{
	// System.out.println(query);
	// System.out.println("-------------------------------");
	// System.out.println(basket);
	AbstractElanQuery eq=null;
	String qh="";
	try
	{
	StringReader sr = new StringReader(query);
	SILProcessor sp = new SILProcessor();
	Document se = loader.loadDocument(sr);
	SIL sil = sp.process(se);
	eq = (AbstractElanQuery)sil.getModule();
	switch(eq.getQueryType())
	{
	case ElanQuery.QUERY_HEADER:
	qh = eq.getHeaderQuery(); // gets the header query text
	break;
	case ElanQuery.QUERY_CONC:
	case ElanQuery.QUERY_CONTEXT:
	case ElanQuery.QUERY_STATS:
	case ElanQuery.QUERY_WORDFREQ:
	case ElanQuery.QUERY_WORDLIST:
	qh = eq.getTextQuery(); // gets the content query text (CQL)
	break;
	default:
	qh = "";
	}
	System.out.println("got Query from : "+sil.getUserID().getLogin());
	}
	catch(Exception e)
	{
	System.out.println("query parsing error : "+e.toString());
	}
	// decoding of the basket
	try
	{
	// instanciation of a reader to read the basket string sequentially
	StringReader sr = new StringReader(basket);
	// creation of an XML Document corresponding to the XML string
	Document sbd = loader.loadDocument(sr);
	// extraction of the root element from the basket document
	Element sbe = sbd.getDocumentElement();
	// parsing of the basket element
	Basket sb = SILBasket.process(sbe);
	// extraction of the basket resources
	for (Enumeration en = sb.getResources();en.hasMoreElements();)
	{
	Resource r = (Resource)en.nextElement();
	String r_sid = r.getSid();
	if (r_sid.equals(sid)) // verify if the resource is on this local server
	{
	String idno = r.getIdno(); // gets the resource identifier
	}
	}
	}
	catch(Exception e)
	{
	System.out.println("basket parsing error : "+e.toString());
	}
	Integer icpt = new Integer(0);
	sessions.put(sessionID,icpt);
	int cpt = 0;
	ElanResultSetImpl rsp = new ElanResultSetImpl(new Meta(),new Result());
	rsp.setTotalSize(NB_RESOURCES);
	Hashtable htres = new Hashtable();
	for(int i=0;i<MAX_RETURN && cpt<NB_RESOURCES;i++)
	{
	// rsp.addRecord(sid,getIdno(),qh+" "+sessionID+" "+cpt);
	htres.put("leftContext",getCommentaire());
	htres.put("node",qh);
	htres.put("rightContext",getCommentaire());
	htres.put("info",sessionID+" "+cpt);
	rsp.addRecord(sid,getIdno(),null,htres);
	cpt++;
	htres.clear();
	}
	sessions.put(sessionID,new Integer(cpt));
	if (eq!=null) queries.put(sessionID,eq);
	return rsp;
	}
	/**
	* ask for the next results of the former query identified my sessionID
	*
	* @param sessionID the session ID of the former query
	*/
	public ElanResultSet next(String sessionID)
	{
	Integer icpt = (Integer)sessions.get(sessionID);
	if (icpt==null) return null;
	int cpt = icpt.intValue();
	if (cpt>=NB_RESOURCES) return null;
	ElanResultSetImpl rsp = new ElanResultSetImpl(new Meta(),new Result());
	rsp.setTotalSize(NB_RESOURCES);
	String query=null;
	ElanQuery eq = null;
	try
	{
	eq = (ElanQuery)queries.get(sessionID);
	if (eq!=null)
	{
	switch(eq.getQueryType())
	{
	case ElanQuery.QUERY_HEADER:
	query = eq.getHeaderQuery();
	break;
	case ElanQuery.QUERY_CONC:
	case ElanQuery.QUERY_CONTEXT:
	case ElanQuery.QUERY_STATS:
	case ElanQuery.QUERY_WORDFREQ:
	case ElanQuery.QUERY_WORDLIST:
	query = eq.getTextQuery();
	break;
	default:
	query = "";
	}
	}
	}
	catch(Exception e) {}
	if (ElanQuery.QUERY_HEADER==eq.getQueryType())
	for(int i=0;i<MAX_RETURN && cpt<NB_RESOURCES;i++)
	{
	rsp.addRecord(sid,getIdno(),null,getNewResource());
	cpt++;
	}
	else
	for(int i=0;i<MAX_RETURN && cpt<NB_RESOURCES;i++)
	{
	rsp.addRecord(sid,getIdno(),query+" "+sessionID+" "+cpt);
	cpt++;
	}
	sessions.put(sessionID,new Integer(cpt));
	return rsp;
	}
	/**
	* close the session identified by sessionID
	*
	* @param sessionID the session ID of the former query
	*/
	public void close(String sessionID)
	{
	if (sessions.containsKey(sessionID))
	sessions.remove(sessionID);
	if (queries.containsKey(sessionID))
	queries.remove(sessionID);
	}
	}
	//EOF QueryHandlerTestImpl
	I. General communication model between servers in the ELAN Network

