TELRI-II PPR 1

Annex 5

TELRI Project Deliverables

Page

Annex 5.1 WP 3.1 Report on TRACTOR Software and Networking (subtasks 1 and 2)

 37

Annex 5.2 WP 3.1 Report on TRACTOR Common Query Language Definition (subtask 6)

 72

Annex 5.3 WP 3.3 TRACTOR User Agreement

 88

Annex 5.4 WP 3.3 TRACTOR Membership Form

 90

Annex 5.5 WP 4.1 Resources Questionnaire

 91

Annex 5.6 WP 4.1 Report on Questionnaire

 93

Annex 5.7 WP 5 Report on PLATO corpus

107
Annex 5.1

WP 3.1 TRACTOR Software and Networking (subtasks1 and 2)

Responsible: Laurent Romary, Nancy, France (NAN)

ELAN Reports

User Client (Deliverable 3.1.1)

&

Network Management Unit (Deliverable 3.2.1)

Samuel Cruz-Lara, Laurent Romary, Christophe de Saint-Rat,

Patrice Bonhomme

{cruzlara,romary,desaintm,bonhomme}@loria.fr

LORIA

CNRS, INRIA & Universities of Nancy

MLIS Programme

MultiLingual Information Society

Project Number:
MLIS-121

Project Title:
European Language Activity Network (ELAN)

Deliverable Number:
D 3.1.1 & D 3.2.1

Contractual date of delivery to EU:
30 November 1998

Actual date of delivery to EU:
30 January 1999

Deliverable Title:
Software and Networking Specifications

Authors:
Samuel Cruz-Lara, Laurent Romary, Christophe de Saint-Rat and Patrice Bonhomme

Abstract

The ELAN project is a distributed language resources system, offering access to existing resources to their potential users throughout Europe. In order to serve the electronic multilingual resource market, our task is to specify and elaborate a network of inter-connected resource servers. This document defines the technical specifications of each nodes that form the ELAN network: the user interface of the ELAN client; the resource servers and the network management unit.

Keywords

Language resources, Distributed systems, Network, User interface

Table of contents

411
Introduction

1.1
Scope
41
1.2
User in mind
41
1.3
Objectives
42
2
General network organisation
42
2.1
A decentralised network — rationale
42
2.2
A user interface — friendly
43
2.3
And the users
43
3
User client (Deliverable 3.1.1)
44
3.1
Introduction
44
3.2
ELAN main services
44
3.2.1
Connection to a local server
44
3.2.2
User identification
45
3.2.3
User registration
45
3.2.4
Working space
46
3.2.4.1
Working servers selection
47
3.2.4.2
Working resources selection
48
3.2.4.3
Tools and content query
48
3.2.4.4
Shopping baskets
49
3.2.5
Result set management
49
3.2.6
Statistical tests
49
3.2.6.1
Introduction and trade-offs
49
3.2.6.2
From the client side
50
3.2.6.3
From the local server side
50
3.2.6.4
From the remote server side
50
3.2.6.5
The protocol retained within ELAN
51
3.2.6.6
Implementation
51
3.3
Technical requirements and implementation
51
3.3.1
XML for data and message encoding
51
3.3.1.1
Resource meta-data encoding
52
3.3.1.2
The ELAN workspace encoding
52
3.3.1.3
Meta-data and content query encoding
52
3.3.2
Software requirements
52
4
Network Management Unit (Deliverable 3.2.1)
53
4.1
Organisation
53
4.2
The Network Management Unit (NMU)
54
4.2.1
Role of the NMU
54
4.2.2
Clients, Servers and NMU communication
55
4.2.3
NMU / Servers communication
57
4.2.4
IDL description
58
4.3
Server-side organisation
61
4.3.1
Introduction
61
4.3.2
XML databases (users and linguistic resources databases)
62
4.3.2.1
Users repository
62
4.3.2.2
Linguistic resources databases
62
4.3.3
Protocols and languages used in ELAN
62
4.3.3.1
The XML level
62
4.3.3.2
The MIME level
62
4.3.3.3
The HTTP level
63
4.3.4
Query broadcast and result processing
63
4.3.4.1
Transaction
63
4.3.4.2
Transaction/Query Servlet
63
4.4
Security aspects
64
4.4.1
Securing access to the NMU (Network Management Unit)
64
4.4.1.1
The CORBA Security Service (CSS)
64
4.4.1.2
Password protected access to the administration methods
65
4.4.2
Securing Server-Server communications
66
4.4.2.1
SSL (Secure Sockets Layer)
66
4.4.2.2
S/MIME
66
4.4.2.3
PGP Signature
66
4.4.3
Conclusion
67
Appendix I: JDK Supported Encoding
68
Appendix II: The ELAN workspace DTD
71
Appendix III: A simple workspace instance
Fehler! Textmarke nicht definiert.

Introduction

Scope

One of the objectives of the ELAN project is to define a proper software environment through which it might be possible to access and/or distribute linguistic resources, which would be spread among different servers.

There are different reasons why to go about in this fashion.

First, it should be considered that there already exist several sites around the world (most of the European ones being represented in ELAN) which actually act as brokers for different types of linguistic resources. The idea emerging behind the sole period of the ELAN project is actually to be able to bring together the corresponding resources, in order to provide any user with a global access to these. In some cases this will lead to more coherence between these databases since redundancies might be detected or complementary resources (e.g. parallel texts) put into correspondence.

Second, the classical view of a centralised database containing all the information in a given domain is far from applicable to linguistic resources where, because of their intrinsic diversity (prose, theatre, poetry, newspaper articles, dictionaries, historical documents etc.), there is a need for them to be created and above all maintained at a place where there is the competence to do so. In particular, the encoding background adopted within ELAN, that is SGML (and its subset XML), allows one to continuously enrich documents with specific linguistic annotations like part of speech (POS) tags or proper names (to quote only two possibilities).

Finally, there can be specific constraints that can preclude some given resources to be deported to another site than the site which has originally created them. In particular, some of the partners within ELAN have specific agreements with publishers, which express strong conditions on the actual distribution of electronic files. It is thus more sensible not to take the risk of hampering the agreement by overly spreading the corresponding contents. In the case of the ELAN network, each resource is only accessible through specific queries which can thus be controlled as to their actual applicability.

User in mind

Still, from the user’s point of view, there should not be much change in the way the resources are to be accessed, which means that whether there are one or several servers should be rather transparent to him. Of course, taking into account the short duration of our project, we will not supply, in the prototype to be delivered, the whole set of functions that an existing server such as, say, the one developed by Leiden, is currently able to provide its own users with. Transparency is thus to be understood with regard to existing different servers, not from the point of view of benefiting from all the possibilities of the different sites at the same time (at least for the duration of the project).

As we will see, adopting a distributed framework, as opposed to the classical view of a centralised database, induces several specific problems for which this deliverable is trying to provide some plausible answers. Among those, we will have to deal specifically with the problem of broadcasting queries to different servers and conversely combining the corresponding result sets. As an example, statistics can only be dealt with in our distributed architecture if part of the computation is kept on the remote servers’ sides and part is carried out locally (on the access server).

Objectives

In the context presented above, the objective of Work Package 3 (Software and Network) can be seen as an attempt to validate the feasibility of a networked environment for accessing linguistic resources and put forward the main aspects on which it would be necessary to focus in the future. Beyond that, and coherently with the general approach of the standards of the project, we have tried to base any proposal and/or implementation on existing (and even emerging) technologies (i.e. Java, Swing, CORBA, XML), so that to ensure some kind of durability to our work.

Precisely, the aim of this work package is to ensure a good synchronisation between the different implementation tasks by providing a precise description of:

· the interaction scenario between the user and the network (through the local access point);

· the interaction between the different elements of the network;

· the interaction between the system components of Network Access as well as the interaction of Network Access with related work packages.

In particular, the task will have to put forward the actions to be taken to ensure the consistency of the different databases held by LR servers (users, meta-data, network configuration …), stating precisely when and in which condition the corresponding data are accessible and modifiable.

This deliverable (t0+3) is a report defining:

1. the precise organisation of the user interface;

2. the organisation of the network proper;

3. the flow of information within the network;

4. the organisation of maintenance and updating of Network Access components.

The deliverable at t0+9 will be a software corresponding to a platform independent user client.
General network organisation

The general purpose is to develop a client/server system which allows a user to contact one or more servers and select sub-corpora
 for querying, taking into account various access conditions.

A decentralised network — rationale

All tasks dealing with the user interface should be concentrated on the client side, while searching and other computationally intensive operations should be accomplished by the server.

[image: image4.png]
Figure 1. General structure of the ELAN network

The network (see Figure 1.) has the following characteristics:

· each server is an autonomous unit containing its own linguistic data;

· if a server receives a request related to a linguistic resource it does not contain, the server should act as a “broker” and transmit the request to other servers in the network which are known to it;

· one server is accessible to registered users through a general purpose Java-compatible web browser.

A user interface — friendly

This interface should be designed with a non-technical user in mind. Technically advanced features should be available in an intuitive way. Although all system components will have their own interface, due to different functions, they must have the same “look and feel” (i.e. surface and behaviour). This reduces the time the user needs to become acquainted with the network and contributes to the aspect of simplicity.

This user interface will be implemented as a client at the level of which little, not to say no, linguistic resource processing is to take place (notion of thin client). Basically, the interface will allow a user to make his different queries and will display result sets according to some specific style-sheets associated with these.

The following design criteria should be adopted for the interface:

· it should be GUI-based ;

· its implementation should allow the user to choose its interaction language (in particular, any PAROLE or TELRI language has to be taken into consideration).

In case of an error the user should be supplied with clear information about the error and what he can do to correct it. If the error could not be corrected by the user (e.g., due to a software bug) the helpdesk is automatically informed.

And the users

To be in line with the idea of a decentralised network, we have consider that a given user should only have to be registered at one given site and that no central user database should have to be set up. From the network point of view this has two consequences:

· each server should manage its own user databases, containing both the general user identification information and dynamic information related to session parameters (see section 4.3.2) ;

· each time a query is broadcast from an access server to a remote server, an identification tag (user id and authorisation level) should be transmitted in order to evaluate the applicability of the query.

User client (Deliverable 3.1.1)

Introduction

Given the preceding architecture, any authorised user will be provided with an environment which will lead him along the following steps:

5. connection to a local server;

6. user identification;

7. choice of working servers. Given the list of available LR servers - available through the local server - in the network, together with their respective server profiles, the user will select those servers which may provide the proper resources or the proper services (tools) he wants to access ;

8. selection of a subset of resources. Through an iterative process of requests to the selected servers, the user will build up a virtual sub-corpus (i.e. By way of pointers to individual resources) upon which he will actually work ;

9. access to document content proper. The user specifies a query which is broadcast to the appropriate servers holding the data selected in the user's sub-corpus. The queries are transmitted after being translated into a Common Query Language - CQL - shared by all the servers in the network.

As a consequence, the ELAN project makes a distinction between two types of queries:

10. Resource Selection Query (RSQ).

This type of query corresponds to step 4 above. Its interpretation is optimised as it accesses the index database.

11. Content Access Query (CAQ).

This type of query corresponds to step 5 above. It represents a direct access to the document content.

ELAN main services

Connection to a local server

Within ELAN each individual server is responsible for the management of its own database of registered users. A common code of practice is to be shared between the servers belonging to the network to ensure a coherent verification scheme among them. Besides, a log file of each user's activity will be maintained locally, which can be used for auditing purposes.

As a result, the first step in the user-client scenario is to connect to one’s own access server by means of a web browser which then downloads the user client as an applet window. As shown in Figure 3. the applet gives access to the different ELAN services as described below.

During the process of sub-corpus selection, the access information of the documents is matched with the user's entry in the user registration. Access to the documents is provided accordingly.

User identification

In order for a user to connect to a server, he must follow an identification process. Identification is the process that a server executes to verify if a user is a registered ELAN user. Only registered users should connect to an ELAN server. Each registered user will be identify with a unique login name and a secret password.

User registration

Registration is the process that all new users will have to follow in order to use an ELAN server (see Figure 2.). Obviously, registration is done by filling in a form. A login name and a secret password must be provided by the user. The server verifies that the selected login name is unique. The registration will be validated by the administrator of the local server. For this purpose, an administration interface will be also provided with each server of the ELAN network.

[image: image5.png]
Figure 2. User's registration

Working space

In order for a user to select the LR servers he wants to work with, he must interact with a “working space”. The main purpose of the working space is to provide the user with a graphical interface that allows him to have access to the ELAN network and work on it.

The working space will offer the following functions :

· Selection of the working servers;

· Selection of working resources;

· Selection of tools which may be applied to resources in the shopping basket;

· Manipulation of the shopping baskets;

· Definition of the user preferences;

The working space is presented as a “reception panel”. Inside this panel, we have several other panels which may be selected by the way of a tabbed component. Each panel offers one of the functions enumerated above (see Figure 3.).
The “Servers” tab allows a user to select the servers he wants to access. This panel is composed by a list of “referenced servers”. For each referenced server, we indicate its name, its URL and its state (i.e., online or offline). Thus, a user can dynamically select all servers corresponding to his needs.

The “Resources” tab allows a user to dynamically select all the resources he wants to access to by means of the “shopping basket” paradigm. The selection of these resources can be done in several steps by successive refinements.

The “Tools” tab allows a user to have access to a set of tools that he could use with his list of selected resources. Furthermore, as we consider the CQL an extended tool, a graphical interface allowing the user to edit, modify and send his CQL queries, will be integrated within this “Tools” tab.

Finally, the two last tabs “Shopping Baskets” and “Preferences” allow a user respectively, to personalise his own working space and to save his shopping baskets. It should be possible, for example, to select the language the user wants to work with, as well as to combine the loading and saving of several shopping baskets.

[image: image6.png]
Figure 3. ELAN user's reception panel

Working servers selection

Before any query session (resource selection), a user has the possibility to select among a set of online servers (see Figure 4.), the server(s) he wants to work with. At any moment of the process, the user can edit his list of working servers and modify it.

[image: image7.png]
Figure 4. The server selection panel

Working resources selection

The principle is to restrict progressively the choice of textual resources, in such a way that at the end of the selection process, the user only keep the corpora he wants to work with. The user has the possibility to query either the whole ELAN network or his selected working servers. The resource selection is based on the corpus documentation (meta-data i.e. the TEI headers) and enables the user to make some simple queries (on a single field) or multiple queries (combination of fields with Boolean expressions). For that purpose, the user will have access to a friendly query interface for editing, modifying and sending his queries to his local server.

Another way for the user to select his working corpora is to browse through the whole set of referenced resources and to select the resources he is interesting to.

Tools and content query

As the main goal of this architecture is to give a user an access to a large set of resources, it is mostly important to provide a working space dedicated to the tools and content access. First of all, the user will have access to a CQL editor for editing and sending his CQL queries. The CQL editor will be based on a graphical interface (a kind of form) where he can fill in the fields, the type of query, the word or expression he is looking for, the context of searching, etc. We considered the possibility to provide 2 different levels of interface:

12. A simple or basic interface for novice users: close to an usual form;

13. A more complete (and also complex) interface for specialist users: close to a CQL editor.

The output of the result will be display directly into the Web browser.

Shopping baskets

The shopping basket keeps all the resources that the user has selected. This selection is made by way of the “shopping basket” paradigm : while the user consult the resources he wish to access, he puts all his selected resources in a “shopping basket”. Of course, one user can have several shopping baskets.
Obviously, the shopping basket can interactively be modified or stocked from one session to another. All on-line operations are effectively realised on the shopping basket, that is, download operations – when possible -, but also, all operations related to the tools which may be applied to the resources, for example, mono and multilingual concordances. These tools can be selected by means of the “Tools” tab.
Result set management

Once a given result set of concordance lines (or simply hits) is sent back to the user client, there are different operation which can be performed on it without having to re-send a query to the different servers, namely:

· sorting

· filtering

· merging with a new result set

One difficulty is that not all concordances are present at one time on the client site. To cope with this problem, several strategies can be foreseen:

· the user deliberately asks for all concordances, maybe after restating his query to reduce the size of the result set (there seems to be a contradiction here..);

· sorting, for instance, only operates on available results, which might be good enough to look over possible lexical context, but probably not for other applications.

Statistical tests

Introduction and trade-offs

Working on textual resources does not only mean browsing through contexts centred on a given node word of expression. The ELAN network also has to provide users with the possibility to operate on the corresponding contexts, in particular through statistical tests that may designate for instance possible collocations associated with the node word. Still, there is a hard trade-off when considering where exactly in the general ELAN architecture such a computation should take place, because of the following constraints associated with the different elements relating a user with the resource he wants to work with.

First let us consider what information is needed for the statistical tests we contemplate here:

· Reference frequencies — the number of occurrences of a given word in the “whole” textual database. Depending on what is actually needed (by the user), these frequencies can be the combination of the occurrences of the word in all texts for all databases, or restricted to the texts which he has selected;

· Contextual frequencies — the number of occurrences in the concordance lines selected by the user.

· Positional information — in specific cases, it is important to know the contextual frequencies associated with the different positions one given word occupies around the node word.

· Total size of the reference database — the total number of tokens in the reference corpus as chosen to compute reference frequencies;

· Total size of the concordance lines — the total number of tokens within the set of selected concordance lines (from which contextual frequencies have been computed)

It should be noted that these different figures can be combined (summed up) when produced by different servers whereas it makes no sense to combine statistical scores such as t-score or mi-score.

Let us now consider the computational constraints inherent to the general organisation of the ELAN network and the associated conclusions that can be driven with regards to the implementation of statistical scores.

From the client side

· The user does not have to know necessarily where the resources he has selected come from. He should thus be able to choose a statistical test transparently on his selection;

· for the sake of efficiency, the concordance lines may not have been fully loaded on the user client and thus the contextual frequencies cannot be computed here.

Conclusion: the user client will solely visualise results which will be provided to it by its local server. It may only sort and threshold the corresponding tables (e.g. word x decreasing score x position) in an interactive mode.

From the local server side

· The local server does not have all the data needed to compute a given score and it would be nonsense to download the whole concordance lines from remote servers to the local servers;

· on the contrary, it has the best position to combine information issued by remote servers to compute statistical scores;

Conclusion: the local server combines frequency tables which he queries to remote servers and provides the client with the proper statistical results.

From the remote server side

· The remote server can easily provide reference frequencies and reference corpus size for its own databases (which could even have been computed beforehand). For more specific reference frequencies, he should be provided with the list of resources from which these are to be computed;

· the remote server can also compute contextual frequencies and context size if it is provided with the proper references associated with the concordance lines (element identifiers or node word position + distance);

Conclusion: the remote server computes all the basic frequencies which are needed for a given statistical score according to the queries it receives from the local server.

The protocol retained within ELAN

<request type="stats">

<environment type="[element|distance]">S</environment>

<get what="word-frequency-list" positions="[yes|no]"/>

</request>

<result type="word-frequency-list">

<w freq="2">real</w>

<w freq="5">example</w>

</result>

<result type="word-frequency-list">

<w freq="2" relPos="-4">real</w>

<w freq="1" relPos="-2">real</w>

<w freq="6" relPos="-1">real</w>

<w freq="3" relPos="5">real</w>

<w freq="5" relPos="-3">example</w>

<w freq="15" relPos="2">example</w>

</result>

Implementation

The preceding protocol for statistical information exchange will be comprised in the Java interface provided to the different linguistic resource server. The API will have the following format:

In Java:

NancyClass.get("stats", ELEMENT, "s", "word-frequency-list", false); = Surement pas ça !!!

On the current working set of results (from an earlier query), with an environment defined as the sentence (i.e., type="element") get me a word-frequency list with/without positional information.

In Java:

Enumeration NancyClass.getResult();

class WordFrequencyItem {

String word = "real";

boolean positionalInformation = false;

int frequency = 2;

int offset = 0; // only used if positionalInformation = true

}

Technical requirements and implementation

XML for data and message encoding

In the framework of ELAN, all flowing data, (i.e. requests, results, messages, …), as well as all information about users and user’s working spaces, will be encoded using XML (see W3C REC-xml-19980210).

It is right now usual to use the SGML (see ISO 8879:1986) standard for encoding language resources (see PAROLE, TELRI, Silfide, … projects). However, it has been observed, especially within the World Wide Web Consortium (W3C), that SGML was somehow too complicated to be – as such – a possible exchange format on the Internet. As a result, a subset of SGML – XML (which stands for eXtended Markup Language) – has been proposed (see W3C REC-xml-19980210). It is suggested to design the network infrastructure for linguistic resource distribution upon this new standard for the following reasons:

· XML is a proper subset of SGML and as such will be compatible with most SGML applications implemented so far;

· XML has been fully adopted by major software providers in the framework of next generation web browsers (in particular, Microsoft’s Internet Explorer 5, Netscape’s Communicator 5.0 and Sun’s Project X), which will ensure platform independence for the ELAN network;

· XML provides an advanced linking mechanism (inspired by the TEI extended pointer mechanism) – the XML Pointer Language (see W3C WD-xptr-19980303) and the XML Linking Language (see W3C WD-xlink-19980303) -, which can be the basis for the identification of resources across the ELAN network.

Resource meta-data encoding

PAROLE recommendations for linguistic resource representation are based on the TEI guidelines, which is a document representation meta-language widely used both in the academic and the industrial fields. It may thus seem natural to base any definition of a document exchange infrastructure upon the same very language. Each resource available on the ELAN network will have an associated documentation, also called meta-data. This information will be encoding using the PAROLE recommendations.

As the XML recommendation is a subset of the SGML standard, it should be noted that both CES and TEI encoded data could be readily transformed into XML data.

 The ELAN workspace encoding

The ELAN workspace is in fact an XML document associated with a given user and which is stored on the local server between two given sessions in order to keep any information related to the user identification or activity. It basically comprises the following elements:

· Identification information about the user;

· the current server selection (only one selection is being considered and saved);

· the different sub-corpora (or “shopping baskets”) selected by the user;

· a history of user queries to the server;

· possibly some other parameters such as personal word lists that the user would like to keep.

Appendix II presents a proposal of DTD for the ELAN workspace and Appendix II shows an elementary instance of such a workspace.

Meta-data and content query encoding

Software requirements

For the same reasons of platform independence, any new piece of software developed within the ELAN framework will be implemented in Java, a programming language which is getting the status of a de facto standard for Internet oriented applications. Among other aspects, it is possible to mention the following arguments for adopting Java:

· Java based Applets (i.e. Web based applications) will run on most existing Web browsers, thus keeping the software requirements as limited as possible;

· the “Servlet” API. A servlet is a server-side component, which in the context of HTTP, is the Java equivalent of CGI programs;

· Swing, which is a GUI component kit that simplifies and streamlines the development of windowing components. The Swing component set is part of a class library called the Java Foundation Classes (JFC);

· several XML parsers developed in Java (but not only!) are already available which will ease specific development dealing with PAROLE compatible data;

· internationalisation, which is the process of designing an application so that it can be adapted to various languages and regions without engineering changes;

· Java comprises a treatment of Unicode [see ISO 10646] compatible data, making any software language independent;

· Java IDL, which adds CORBA (Common Object Request Broker Architecture) capability to Java, providing standards-based interoperability and connectivity. Java IDL enables distributed Web-enabled Java applications to transparently invoke operations on remote network services using the industry standard OMG IDL (Object Management Group Interface Definition Language) and IIOP (Internet Inter-ORB Protocol) defined by the Object Management Group;

· Java can be interfaced, in particular, with C/C++ programming languages, thus ensuring compatibility with the software available at the different partner’s sites.
In the framework of ELAN’s user interface, several Java’s API should be used, for example:

Using Swing may allow us to build high-level and high-quality GUI. As Swing is a 100% Java API we keep the benefits of portability, platform independence, etc. Swing components are said to be lightweight because they don't rely on user-interface code that's native to whatever operating system they're running on. In addition, with Swing´s “pluggable look and feel” (PL&F) capabilities, we can make the windowing components take on whatever appearance and behaviour we like. So, we can make them look and feel just like native components of the user’s computer system, or we can give them a uniform cross-platform look and feel – that is, a look and feel that always has the same appearance and behaviour, no matter what kind of system is being used.

We should note that using Swing implies that, web browsers used in the framework of ELAN, must be “Swing-compatible”. At present, only Sun’s HotJava is 100% Swing-compatible. In order for Netscape’s Communicator and Microsoft’s Internet Explorer to be Swing-compatible a “Java Plug-in” must be installed.

Also, it should be easy to see that Java’s “internationalisation” will allow us to offer to ELAN users the possibility of working with several PAROLE or TELRI languages: English, French, Italian, Spanish, German, Dutch, Swedish, Finnish, Danish, Greek, and Portuguese. It should be noted that, several Java classes can convert between Unicode and the set of character encoding presented on Annexe A “JDK Supported Encoding”.

Network Management Unit (Deliverable 3.2.1)

(flow of information and management)

Organisation
The network architecture of ELAN is based on three major actors:

14. The Users (or Clients) which have been described in the preceding sections.

15. The Network Management Unit.

The NMU should be considered as the heart of the network, that is, the NMU allows to link all the servers which are connected to ELAN. The NMU also maintains a database information related to these servers (i.e., names, addresses, description, etc).

A simple Network Management Unit (NMU) must be implemented (see Figure 5.).

16. The LR servers.

As mentioned before, this is a set of independent but associated LR servers. In particular, each server is an autonomous unit bearing its own linguistic data, but if a server receives a request concerning a linguistic resource it doesn't have, the server should act as a “broker” that transmits the request to others servers in the network.

Given that each single server has to:

· know about the list of servers affiliated to the network, and

· be certified in some respect before being connected to the network.

The Network Management Unit (NMU)

Role of the NMU

As stated in section 2 (General Network Organisation), the Network Management Unit (NMU) is the only persistent link between the different servers affiliated to the ELAN network. It has thus the following functions:

· it maintains the list of servers affiliated to the network, together with a general profile for each of them (containing the languages dealt with by the server, the categories of document it may provide (tagged/untagged texts, lexicons, ...). To this end, each server is described by its name, its address (URL), and a flag describing its current status;

· it should be able to answer any query from each server belonging to the network when they have to know the list of available servers, the information attached to them and their current status;

· it updates the local database of the LR servers (SDB) through the network, each time a change has been made to the network description or when something has changed on the part of a given server;

· it is accessible through a simple form-based GUI, to allow the person responsible for the network (the "network master") to add a new server, modify the characteristics of a given server and/or disconnect a server from the network. At this point, no automatic processing will be made form LR servers to NMU to ensure full control of the quality and coherence of the information ;
Because of its central position in the ELAN architecture, the NMU is subject to several constraints, which are to condition its implementation. In particular, it has to be reliable as to its content since it is in charge of providing each server with the proper information to make it communicate with the others.

There are three related but somehow different problems concerning clients, LR servers and the NMU. First, we must allow LR servers to communicate with clients. Second, these servers have to communicate to each other. Third, we also have to implement a mechanism allowing these servers to communicate with the NMU. These points will be described in detail in the following sections.

[image: image8.png]
Figure 5. Overall software management for the network
Clients, Servers and NMU communication

In order to solve client/server and server/server communication, we can use Java’s server-sided components known as “servlets” (see Figure 6.). The third problem would be solved by using a distributed object paradigm issued from CORBA (see Figure 7.).

Servlets are the equivalent of CGI programs, but as they run in a single Java Virtual Machine (JVM), they don't have the per-request overhead of starting a new process per request. Servlets persist across multiple requests and hence can easily maintain states such as open database connections over these requests. Plus there are all the usual advantages of Java : platform portability, safety (a buggy servlet won't bring down the server), enterprise integration (e.g. JDBC, CORBA, RMI), etc. Of course, servlets have to be associated to an HTTP server. We are currently using a GNU licence HTTP server called Nexus (version 0.93).

[image: image9.png]
Figure 6. Function of Java's servlets

Servlets allow us to solve some security problems that we may have when using applets. For instance, in ELAN all information concerning users, as we have mentioned before, will be stocked as XML documents. All these XML documents are created at the user’s level by a Java applet. Because of security reasons, Java applets may not create files directly on the server. As a consequence, the XML document cannot be written on the server.
Thus, the client’s applet and the server communicate via a servlet (see Figure 8.). We should note that, the client’s applet and the servlet allowing communication with the server, must be “physically” downloaded from the same URL. Obviously, the protocol used by the servlet in the framework of applet/server communication is HTTP.

This communication is made by means of a request, in the very same way as a CGI script. That is, in order for the applet to retrieve the XML document concerning a user – this document contains the user’s login and password -, we only have to make the request by using the servlet’s related URL.

ELAN’s users database, which is in part administered via the user’s interface, is composed by a set of XML documents. All these XML documents may be manipulated simply as files or as a real XML database. At present, XML documents are created and manipulated as files by way of an XML validating parser called SXP
. The next step is to use a real XML database.

The XML database (see section 4.3.2), will be probably structured by using the “Resource Description Framework” – RDF – (see W3C WD-rdf-schema-19981030 & WD-rdf-syntax-19981008).

NMU / Servers communication

As indicated above, communication between the NMU and the LR servers will be implemented by using CORBA. As in all CORBA implementations, client/server communications are described by using the “Interface Definition Language” – IDL -.

[image: image10.png]
Figure 7. Detailed architecture of the network

[image: image11.png]
Figure 8. Client / Server communication

IDL description

IDL is a language used to describe client/server interaction. On the server side, IDL allows to describe the set of objects used by the server, as well as, their associated methods. On the client side, IDL is used as a guide which indicates what is the procedure that a client should follow to communicate with a server.

In ELAN, we propose to use a single CORBA object – NMUServer -, which allows NMU/Servers communications.

As an example, the NMUServer associated IDL description can be:

module nmu

{

 enum Status {online, offline};

 typedef sequence<string> serverList;

 interface NmuServer

 {

 boolean add(in string name, in string address, in string info);

 boolean remove(in string name);

 boolean isUpdate(in string name);

 serverList getList();

 string getAddress(in string name);

 string getInfo(in string name);

 Status getStatus(in string name);

 };

};
Two types are defined:

· Status

This type is used to indicate the actual status of an ELAN server : online or offline;

· ServerList

This type is used to represent the actual list of ELAN servers. Each server is identified by a single name.

The NmuServer objet offers a set of methods allowing the LR servers to access all information stocked on the NMU:

· isUpdate(name)

This method may be called by a server to know if the NMU has been updated since the last call. Name is the server’s name.

· getList()

This method returns the list of all NMU referenced servers.
· getAddress(name)

This method returns the internet address of the server referenced by name.

· getInfo(name)

This method returns the profile of the server referenced by name.
· getStatus(name)
This method returns the status (i.e. online or offline) of the server referenced by name.

In addition, two methods allow the remote administration of the NMU:

· add(name, address, profile)
This method is used to add a new referenced LR server to the ELAN network.

If all parameters are considered to be valid, the new server is added to the network. The new server can then be accessed. If a problem occurs, the server is not added to the network and the method returns the false Boolean value.

· remove(name)

This method removes the server referenced by name from ELAN.
During the initialisation phase each ELAN server obtains a reference on the distributed object NmuServer by means of the CORBA naming service. This reference allows to apply a method on this object by using the native syntax implementation (i.e. Java), that is, one can manipulate the distributed object in the very same way as one uses a local object. All network protocols, as required by CORBA’s architecture, are completely masked to the application.
Object Request Broker (ORB)

All distributed objects in CORBA’s architecture flow through the network by using a software bus : the “Object Request Broker” – ORB -. Several ORB implementations exist, but in ELAN we would use a Java’s ORB implementation. We are currently using JacORB, a free JDK 1.1-compatible ORB implementation.
Using JacORB implies the following constraints:

· The naming server of JacORB must be active in order to localise objects;

· in order to be able to localise the naming server by using an URL, one must have a HTTP server in the same domain. That is, one must select a naming space.
Firewalls

As a “typical” TCP/IP implementation, JacORB must reserve some ports, on the one hand to implement the ORB and, on the other one hand, to allow client / server communication.

Unfortunately, when using JacORB one can not select the ports to be used. When JacORB is started, it searches a free set of ports which are selected randomly. If ELAN would work by using an Intranet framework, this would not be a problem. Obviously, ELAN works on an Internet basis, so several LR servers may be part of a sub-network which is access-protected, because of evident security reasons, from the Internet. This protection is the firewall. The firewall may forbid the use of some ports, so in most cases client / server communication may not be possible. That is, JacORB may select a set of ports which may be accessed inside the sub-network, but not from the outside.

An evident solution would be to authorise all accesses to the computer where the NMU resides. Nevertheless, this solution should be quite hard to implement, because of security access restrictions that must be maintained in a sub-network.

So, in order to test a first prototype we have decided to develop an intermediate tool whose function is to allow all clients to communicate with the NMU, while respecting all security restrictions used in the sub-network. This tool is currently being implemented as a “demon” which waits for an UDP request issued by the NMU. When the request arrives, the demon connects to the NMU. When the connection between the NMU and the demon has been done, the demon has a reference on the distributed object NmuServer, that is, the demon becomes a client of the NMU server.

By using the UDP protocol, we can select one single fixed port to receive all requests. Port number 1130 has been selected (see Figure 9.). Obviously, the demon must be executed inside the NMU’s server sub-network.

[image: image12.png]
Figure 9. Solving a firewall access problem
Server-side organisation

Introduction

In order for an ELAN server to be used and managed, it must include several software modules:

From the user’s point of view:

· A software module allowing to register users and providers;

· a software module to identify all registered users;

· a “working space” allowing users to build a corpus: the principle is to restrict progressively the choice of linguistic resources in such a way that at the end of the selection process, a user keeps only the corpora he wants to work with.

From the administrator’s point of view:

· A software module allowing to manage all information related to users;

· a software module allowing to manage all meta-data related to the local linguistic resources (i.e. the linguistic resources of the server).

XML databases (users and linguistic resources databases)

Using XML as a unique encoding system, allows us to reduce the complexity of the software architecture. For example, in order to manage all information about users, we can use the same tools that we use, in order to manipulate linguistic resources.

Users repository

All information related to users is stocked in a XML database. This database, called user’s database, is composed by a set of XML documents which are indexed by means of the user’s login name. The main functions associated to this database are:

· Add a new user (validated by the database administrator);

· remove a user (validated by the database administrator);

· modify some information related to a user (by the user and validated by the database administrator).

A new user cannot be considered as a registered user without a “validation operation” from the database administrator. Thus, it should be useful to manage a temporary database to stock new users while they wait for the administrator validation.

Also, associated to the users’ database, there is another XML database related to users’ working spaces. This database, called working spaces’ database, may contain, for each registered user, the following information:

· The user’s working space, as well as a list of all user’s shopping baskets;

· a list of all requests generated by the user.

Linguistic resources databases

The linguistic resources database will be constructed from a list of TEI Headers. To administrate this database the following functions will be provided:

· Add a new linguistic resource (database administrator);

· remove a linguistic resource (database administrator);

· modify / update information related to a linguistic resource (database administrator).

The linguistic resources database will be indexed by the whole set of fields which compose the TEI Header.

Protocols and languages used in ELAN

There are three levels of protocols and/or languages in ELAN:

The XML level

All information flowing through the network will be encoded in XML. The encoding system is defined by the ELAN’s DTD (inspired from the Silfide Interface Language DTD). This DTD allows to encode user’s working spaces (WS), requests on meta-data (QL), results for these requests (RS), and all information related to users (UI).

The MIME level

Because of efficiency, in particular in the framework of broadcasting requests from a server to another, not all needed information is not presented in XML documents. In general on the Internet, data like sound, images, etc,. are encapsulated on a MIME layer. MIME allows to assign a data type (i.e., content-type), as well as to encapsulate heterogeneous data on a single data flow called MIME/Multipart: on a single channel, one single connection is enough in order to exchange multiple data.

The HTTP level

ELAN uses the HTTP protocol (like the whole Internet) as the main communication protocol. Using HTTP is extremely simple (two single Java instructions allow to open an HTTP connection. However, http is a "stateless" protocol. This implies that each time a new page is loaded, the user is effectively disconnected from the server and it keeps no information allowing to know who was the user and what he was doing.

The global scenario is:

17. Open the client/server connection;

18. send a request from the client to the server;

19. send a response from the server to the client;

20. close the client/server connection.

Thus, even after logging into a site, each page accessed must pass the username and the password back to the server to verify the user’s right to access the page. The client application (the browser) and the server application (the Web server) have no concept of local variables, local method calls, or objects. This problem is solved in part by using MIME/Multipart.

Query broadcast and result processing

On the server’s side, all requests related to meta-data are analysed by means of a “local transaction”. From a technical point of view, a Transaction is integrated within a Java’s Servlet Session.

Transaction

Every access to the linguistic resources database (database of headers) is made by means of a local transaction instance. In the framework of a transaction, all accesses to the linguistic resources database are considered to be persistent until the end of this Transaction.

A Transaction may be open or closed:

· open(), while receiving a request, for example, or during a database update operation;

· close(), in general by a user’s request or because a “timeout” operation.

We can also test any time, if the transaction is active by using the isopen() operation.

Managing an XML database is also done by means of a transaction. This transaction allows to control all current operations:

· commit(), in order to execute an operation

· abort(), to stop an operation.

Transaction/Query Servlet

Activating a Transaction by using a Java’s Servlet allows to simulate the persistence of the client / server connection via a ServletSession provides by the JSDK
 API. This persistence allows a user to progressively keep all results he is interesting in. Thus, even if the evaluation of a request returns a high number of results, the user doesn’t need to have a high storage or process capacity, in order to “navigate” inside the result’s set.

Security aspects

Two main security threats can be identified in the ELAN architecture:

· Controlling access to the NMU and especially to the administration methods.

· Securing the communications between servers.

This basically means that we need to:

· Identify trusted clients on the NMU;

· Identify users on servers so only the authorised ones get access to protected resources;

· Make sure that no user can connect as someone else, in order to get specific privileges;

· Make sure that intercepting the data exchanged between servers is useless.

Identification of users to the ELAN servers is implemented through a classic login and password procedure. Our purpose here is to present different methods that should be implemented and tested in order to secure the transactions taking place in the ELAN Network, on the one hand, between servers themselves, and on the other one hand, between servers and the NMU.

The methods presented here are all based on well known technologies largely used on the Internet, and available for systems implemented in the Java language.

Securing access to the NMU (Network Management Unit)

Some of the methods provided by the NMU IDL interface are used for administrating the NMU database, and so have to be protected in a way a fake client implemented by some “entrusted” people could not execute them, and thus trash the NMU database.

Therefore, we have to implement a system allowing only trusted clients to call these methods.

Two options are available for securing access to the NMU. The first one, the CORBA Security service, is implemented as a standard CORBA service. The second one is based on a password system.

The CORBA Security Service (CSS)

As a distributed computing architecture, CORBA provides a security service, based on the Security Reference Model (SRM). The Object Management Group (OMG) identifies the following security threats to a CORBA System :

21. An unauthorised user of the system gaining access to information that should be hidden from him;

22. A user masquerading as someone else, and so obtaining access to whatever that user is authorised to do, so that actions are being attributed to the wrong person;

23. Security controls being bypassed;

24. Eavesdropping on a communication line, so gaining access to confidential data;

25. Tampering with communication between objects : modifying, inserting and deleting items;

26. Lack of accountability due, for example, to inadequate identification of users.

In ELAN, we are essentially interested in the fifth point. We want to allow access to administration methods of the NMU only to the administration clients. The other clients (the ELAN servers) should never gain access to these methods, neither should any “untrusted” client. The following features are included in the countermeasures provided by the CSS system:

27. Controlling access to:

· an IDL interface,

· a subset of the implementations of an IDL interface,

· interface operations and collections of interface operations;

28. Identification and authentication of:

· the user to the CORBA system,

· the client to the target,

· the target to the client.

Though CSS provides exactly the kind of protection we need in ELAN, it is not distributed with all CORBA Brokers... On the contrary, most of the free CORBA brokers implemented in Java implements a very thin subset of CORBA services, not including the security service.

Password protected access to the administration methods

The second option consists of providing an encrypted password as a parameter to any of the administration methods defined in the IDL interface. As a consequence, the code would actually be executed only if the right password is provided.

The two methods of the NmuServer class that should be protected this way are add and remove, which respectively allow adding and removing of ELAN servers. They could be defined in the IDL this way:

boolean
add(in string password,

 in string server_name,

 in string server_address,

 in string server_info);

boolean
remove(
in string password,

in string server_name);

In order that the password is not intercepted by a third person, an OTP system can be used. OTP stands for One Time Password and means basically that a password can be used only one time, and gets invalidated as soon as it has been used. Thus, both the server and clients have to recalculate a new password for every new connection.

The password is calculated with two parameters : the secret key and the challenge key. The secret key is provided to both the server and the clients, but never transmitted upon the network, so it cannot be intercepted. The challenge key is a counter, which is incremented by the server after every connection. Before connecting, the client asks the server for the challenge key and with its secret key calculates the password to be transmitted. The server does the same with the counter he just sent to the client and the secret key, and if the calculated passwords match when the client tries to connect, and the access is granted.

In order to allow the transmission of the challenge key, a simple method should be defined in the IDL Interface:

string getChallengeKey();

Securing Server-Server communications

The requests made to the ELAN servers contain identification and authentication information that the servers use to determine whether the user is allowed to access the data he wants to.

The point is if “untrusted” users get this information (by listening the network for example), they can modify the request by hand and connect to the network as a trusted client, receiving access to the corresponding resources.

There is no way to ensure no one would intercept the requests when they are transmitted from one ELAN server to another, but we can make this information useless with encryption or signature technologies.

SSL (Secure Sockets Layer)

The protocol is composed of two layers. The lowest, on top of some reliable transport protocol like TCP/IP, is the SSL Record Protocol, used for encapsulation of various higher level protocols. One of these, the SSL Handshake Protocol, allows servers and clients to authenticate to each other and to negotiate an encryption algorithm and cryptographic keys before the application protocol transmits or receives its first byte of data.

SSL is well known on the Internet since it's usually used to secure transaction with the HTTP protocol, which in the above architecture is the application protocol.

The point is that not every HTTP server implements this protocol, and that in ELAN, we don't really need encryption but only authentication and integrity check of the messages being send between servers.

S/MIME

S/MIME (Secure/Multipurpose Internet Mail Extensions) provides a standard way to send and receive secure MIME data. Based on the MIME standard, it provides the following security services:

· authentication

· message integrity

· non-repudiation of origin, using digital signatures

· data security using encryption

In ELAN, the CQL is already encapsulated in a MIME MULTIPART document, which means it would be very easy to implement this protocol using probably only the signature feature.

An implementation of the S/MIME standard in the Java programming language is available at http://jcewww.iaik.tu-graz.ac.at/index.htm

PGP Signature

PGP (Pretty Good Privacy) is a public key encryption system. This means that it does not depend on the encryption key being kept secret for its security. The public key is used to encrypt messages and is distributed to any instance that would like to send a secure message. A separate key, known as the secret key, is used to decrypt messages. PGP can be used either to encrypt or only sign messages.

Since encryption using PGP is forbidden in some countries including France, we should not use this feature in the ELAN network, but signing a message using this system seems to be a good solution.

PGP encryption and signature features had been coupled with the MIME standard and is known as the PGP/MIME system.

Conclusion

Since we don't need encrypting the data to be transmitted, the S/MIME signature technology seems to be the most reliable for our purpose. A Java library already implements it and seems easy to use and integrate into the ELAN system. We already use the MIME format for transmitting the requests between servers, and the signature will be added as a new part in the MIME/MULTIPART document.

Appendix I: JDK Supported Encoding

JDK Software Release: 1.1.x

The InputStreamReader, OutputStreamWriter, and String classes can convert between Unicode and the following set of character encodings:
Character Encoding
Description

 ASCII
ASCII

 ISO8859_1
ISO 8859-1

 ISO8859_2
ISO 8859-2

 ISO8859_3
ISO 8859-3

 ISO8859_4
ISO 8859-4

 ISO8859_5
ISO 8859-5

 ISO8859_6
ISO 8859-6

 ISO8859_7
ISO 8859-7

 ISO8859_8
ISO 8859-8

 ISO8859_9
ISO 8859-9

 Big5
Big5, Traditional Chinese

 Cp037
USA, Canada(Bilingual, French), Netherlands, Portugal, Brazil, Australia

 Cp1006
IBM AIX Pakistan (Urdu)

 Cp1025
IBM Multilingual Cyrillic: Bulgaria, Bosnia, Herzegovinia, Macedonia(FYR)

 Cp1026
IBM Latin-5, Turkey

 Cp1046
IBM Open Edition US EBCDIC

 Cp1097
IBM Iran(Farsi)/Persian

 Cp1098
IBM Iran(Farsi)/Persian (PC)

 Cp1112
IBM Latvia, Lithuania

 Cp1122
IBM Estonia

 Cp1123
IBM Ukraine

 Cp1124
IBM AIX Ukraine

 Cp1250
Windows Eastern European

 Cp1251
Windows Cyrillic

 Cp1252
Windows Latin-1

 Cp1253
Windows Greek

 Cp1254
Windows Turkish

 Cp1255
Windows Hebrew

 Cp1256
Windows Arabic

 Cp1257
Windows Baltic

 Cp1258
Windows Vietnamese

 Cp1381
IBM OS/2, DOS People's Republic of China (PRC)

 Cp1383
IBM AIX People's Republic of China (PRC)

 Cp273
IBM Austria, Germany

 Cp277
IBM Denmark, Norway

 Cp278
IBM Finland, Sweden

 Cp280
IBM Italy

 Cp284
IBM Catalan/Spain, Spanish Latin America

 Cp285
IBM United Kingdom, IrELANd

 Cp297
IBM France

 Cp33722
IBM-eucJP - Japanese (superset of 5050)

 Cp420
IBM Arabic

 Cp424
IBM Hebrew

 Cp437
MS-DOS United States, Australia, New Zealand, South Africa

 Cp500
EBCDIC 500V1

 Cp737
PC Greek

 Cp775
PC Baltic

 Cp838
IBM Thailand extended SBCS

 Cp850
MS-DOS Latin-1

 Cp852
MS-DOS Latin-2

 Cp855
IBM Cyrillic

 Cp857
IBM Turkish

 Cp860
MS-DOS Portuguese

 Cp861
MS-DOS IcELANdic

 Cp862
PC Hebrew

 Cp863
MS-DOS Canadian French

 Cp864
PC Arabic

 Cp865
MS-DOS Nordic

 Cp866
MS-DOS Russian

 Cp868
MS-DOS Pakistan

 Cp869
IBM Modern Greek

 Cp870
IBM Multilingual Latin-2

 Cp871
IBM IcELANd

 Cp874
IBM Thai

 Cp875
IBM Greek

 Cp918
IBM Pakistan(Urdu)

 Cp921
IBM Latvia, Lithuania (AIX, DOS)

 Cp922
IBM Estonia (AIX, DOS)

 Cp930
Japanese Katakana-Kanji mixed with 4370 UDC, superset of 5026

 Cp933
Korean Mixed with 1880 UDC, superset of 5029

 Cp935
Simplified Chinese Host mixed with 1880 UDC, superset of 5031

 Cp937
Traditional Chinese Host miexed with 6204 UDC, superset of 5033

 Cp939
Japanese Latin Kanji mixed with 4370 UDC, superset of 5035

 Cp942
Japanese (OS/2) superset of 932

 Cp948
OS/2 Chinese (Taiwan) superset of 938

 Cp949
PC Korean

 Cp950
PC Chinese (Hong Kong, Taiwan)

 Cp964
AIX Chinese (Taiwan)

 Cp970
AIX Korean

 EUC_CN
GB2312, EUC encoding, Simplified Chinese

 EUC_JP
JIS0201, 0208, 0212, EUC Encoding, Japanese

 EUC_KR
KS C 5601, EUC Encoding, Korean

 EUC_TW
CNS11643 (Plane 1-3), T. Chinese, EUC encoding

 GBK
GBK, Simplified Chinese

 ISO2022CN
ISO 2022 CN, Chinese

 ISO2022CN_CNS
CNS 11643 in ISO-2022-CN form, T. Chinese

 ISO2022CN_GB
GB 2312 in ISO-2022-CN form, S. Chinese

 ISO2022JP
JIS0201, 0208, 0212, ISO2022 Encoding, Japanese

 ISO2022KR
ISO 2022 KR, Korean

 JIS0201
JIS 0201, Japanese

 JIS0208
JIS 0208, Japanese

 JIS0212
JIS 0212, Japanese

 KOI8_R
KOI8-R, Russian

 MS874
Windows Thai

 MacArabic
Macintosh Arabic

 MacCentralEurope
Macintosh Latin-2

 MacCroatian
Macintosh Croatian

 MacCyrillic
Macintosh Cyrillic

 MacDingbat
Macintosh Dingbat

 MacGreek
Macintosh Greek

 MacHebrew
Macintosh Hebrew

 MacIcELANd
Macintosh IcELANd

 MacRoman
Macintosh Roman

 MacRomania
Macintosh Romania

 MacSymbol
Macintosh Symbol

 MacThai
Macintosh Thai

 MacTurkish
Macintosh Turkish

 MacUkraine
Macintosh Ukraine

 SJIS
Shift-JIS, Japanese

 UTF8
UTF-8

Appendix II: The ELAN workspace DTD

<!-- DOCTYPE ws [-->

<!-- === -->

<!-- ELAN : Work Space -->

<!-- Auteur : Patrice Bonhomme, 06 Jan 1999 -->

<!-- === -->

<!--

 PUBLIC

 "-//ELAN//DTD ELAN Work Space 0.5 Draft 19990106//EN"

-->

<!ELEMENT ws (prefs,basket+,servers,histos?)>

<!ATTLIST ws crdate CDATA #IMPLIED

 update CDATA #IMPLIED>

<!ELEMENT prefs (pref*)>

<!ELEMENT pref EMPTY>

<!ATTLIST pref name CDATA #REQUIRED

 value CDATA #REQUIRED>

<!ELEMENT basket (resource*)>

<!ATTLIST basket name CDATA #REQUIRED>

<!-- name : name of the database ??? -->

<!ELEMENT resource EMPTY>

<!ATTLIST resource idno CDATA #REQUIRED

 sid CDATA #REQUIRED>

<!-- href : hypertext reference URL/URI -->

<!-- key : index key in the database -->

<!ELEMENT servers (server*)>

<!ELEMENT server EMPTY>

<!ATTLIST server sid CDATA #REQUIRED>

<!ELEMENT histos (histo*)>

<!ELEMENT histo EMPTY>

<!ATTLIST histo n CDATA #IMPLIED

 date CDATA #IMPLIED>

<!-- date :a date in ISO standard form (yyyy-mm-dd) -->

<!--]> -->

Annex 5.2

WP 3.1 TRACTOR Common Query Language Definition (subtask 6)

Responsible: Laurent Romary, Nancy, France (NAN)

The ELAN Common Query Language (CQL)

ELAN deliverable WP 3.3-1

Pieter Masereeuw

Peter van der Kamp

INL

November 1998

 Version:
1.2

 Date:
1999.04.09

 Status:
Final

Contents

1.Introduction

1.What is the ELAN Common Query Language and why is it needed?

2.Design objectives

2.Components of the ELAN Common Query Language

1.The context of a query

2.Features supported in the ELAN Common Query Language

3.Query syntax

3.Processing CQL queries

1.Text queries and header queries - what they do and how they cooperate

2.Glue

1 Introduction

This document describes the ELAN Common Query Language (CQL).

1.1 What is the ELAN Common Query Language and why is it needed?

The ELAN project aims to make parts of the PAROLE and TELRI corpora available for retrieval

via the Internet. For various reasons, it was decided not to create a new retrieval system. Instead,

existing systems had to be reused in the context of the ELAN project. A number of institutions has

been found willing to cooperate in the process of making their corpus retrieval software available

for this purpose.

The existing systems have more or less comparable functionalities; however, they differed in the

way in which the user had to interact with them - i.e., formulate queries, perform statistical tests,

view output. ELAN aims to overcome these differences by realizing a common query language and a

common user interface by using standard components. The common user interface will be based on

Java and Internet browser technology, esp. the Netscape Navigator and Microsoft Internet Explorer

platforms.

For this user interface to be able to "speak" to the various retrieval engines, a common language has

to be defined. The language that will translate the ELAN query language into the command syntax for

the various query systems is called the ELAN Common Query Language.

The institutions that make their retrieval engines available for use within the context of ELAN are:

· LORIA UMR 7503

 CNRS, INRIA & Universités de Nancy

· University of Birmingham

 Department of English, School of Humanities

 Birmingham, United Kingdom

· CNR - Istituto di Linguistica Computazionale

 Pisa, Italy

· Instituut voor Nederlandse Lexicologie (Institute for Dutch Lexicology)

 Leiden, The Netherlands

1.2 Design objectives

The design objectives for the ELAN Common Query Language are:

· queries, boolean combinations and so on

· if there is a conflict between the power concept and the simplicity concept, simplicity wins

· implementability - it should be possible to translate CQL expressions into the local query

· format of all ELAN retrieval systems

· simplicity - the language should be easy to use

· power - the language should allow non-trivial queries, like adjacency queries, part-of-speech

· even being easy to use, the language should permit the creation of a wizard-like interface that

· helps the user formulate a query - in some circumstances even a simple language requires some

· special notation, for instance when looking for:

· part-of-speech tags (PoS tags)

· words separated by a given number of other words

· discrimination between uppercase and lowercase characters

· SGML markup

· etc.

· the language should support hierarchically structured documents, marked up with SGML

· this support of SGML should not be dominant - users unaware of markup should not be forced

· to think about it, let alone be confronted with SGML

Despite the identical user interface and common query language, different concepts in the various retrieval program may cause subtle differences in query results. For instance, the Leiden approach is based on retrieving sets of phrases (Leiden jargon for paragraphs or sentences), whereas, e.g., the Birmingham approach is based on retrieving positions in the corpus where the match is found. One of the consequences of the Leiden approach is that searching for words will never cross phrase boundaries: where the Birmingham system silently crosses such boundaries during the match, the Leiden system will not. This can, in some circumstances, result in different output.

2 Components of the ELAN Common Query Language

In this section we will discuss:

 1.The context of a query

 2.Features supported in the ELAN Common Query Language

 3.Query syntax

Before we describe the features and the syntax of the language, we will provide a list of example

queries. We hope that this will make the rest of this document easier to read.

Find all occurrences of real example

 real example

 Find some forms of the verb ski

 ski | skies | skiing | skied & V

 Find some forms of the verb sky near a noun from the list ball, painting or picture (where

 near means: within a distance of 5 words to the left or the right):

 sky | skies | skied | skying & V 5:5 picture | painting | ball & N

 Find questions (trick: search a question mark at the end of a sentence):

 ? </S>

 Find all words that start with house:

 house*

 Advanced: regular expression search - color or colour

 regex(colou?r)

 Advanced: combining case-sensitive and case-insensitive matching (note: normally, case

 sensitivity applies for the whole query, and is a feature selectable in the user interface) - the

 Nobel Prize for linguistics or Linguistics (or LINGUISTICS, etc.)

 caseless(linguistics) 3:3 Nobel Prize

2.1 The context of a query

A query is always made within a certain context. For an ELAN query, this context consists of:

· corpus selection

 The corpus to be queried, or a subset of a corpus

· type of the query

· contextual (e.g., concordance lines)

· statistical (miscore, t-score)

· parameters relevant for the given query type, e.g.:

· case-sensitivity of the query (default is case sensitive matching, a lowercase a does not match an uppercase A)

· output parameters for the concordance lines

· type of statistical test to be performed

· optional header query

The header query operates on the TEI headers of each document in the selected corpus. If there is a match, the document corresponding to the TEI header is included in the corpus to be queried by the text query (see below); if there is no match, the document will be excluded. If no header query is present, the entire sub- corpus selection will be used.

 More on header queries in section 3.1 below.

· text query

The text query performs the actual query. It operates on the documents defined by the

corpus

selection, possibly modified by the header query. The processing of the results

depends on the

type of the query: either output is sent back to the user, or statistical tables are generated on which the statistical test can further operate.

When the user wants to perform a query, the entire context will be passed from the client in the web

browser to the servers defined for the given corpus selection. The context will be represented in the

form of an XML Document Type Definition (DTD), a draft version of which is given in Appendix A.

2.2 Features supported in the ELAN Common Query Language

In this paragraph we will discuss the features that are supported in the ELAN Common Query Language. In order to keep things simple, we do not include the actual syntax here; the actual notation will be discussed in the next paragraph.

The ELAN Common Query Language will provide the following features:

· single-word expression

 Single-word expressions correspond with one word, word-plus-PoS-code or SGML

 tag in the corpus. A single-word expression can be:

· word expression

 A word expression is used to search the corpus for a word or a combination of a

 part-of-speech tag and a word:

· Words are defined as:

· literal word

 A literal string that represents a word or punctuation.

· wildcard

 Wildcard searching makes it possible to specify that certain parts of a word (tag, etc) can consist of arbitrary characters, for instance, hous* would select all words that start with hous. Wildcard characters can be used any number of times anywhere in a word.

· list of alternative words

 E.g., searching for the word house or houses

· function

 Each ELAN server will define a set of functions. The effect of the functions is the same as searching for a list of alternative words (the preceding option). In fact, one might say that a function is substituted by a list of alternatives, as defined by the function and its parameters. Functions may help the user by automatically generating lists of alternative words. An obvious example is the generation of all inflected forms of a given stem.

 Each server will at least support the following two functions:

· caseless()

The result is the list of all alternatives of its arguments. For example, if the preceding sentence were the corpus, caseless(the) would be a list consisting of The and the. The caseless() function may be abbreviated to case().

The argument of caseless() is interpreted as if it were a literal word or a wildcard. Hence, caseless(*ily) will match all words ending in ily, uppercase as well as lowercase.

· regex()

The result will be a list with all words in the current corpus selection that match the regular expression string passed as argument. The regular expression string will need to match from the start of a word upto its end.

For instance, the result of regex([Tt]h.) could be a list consisting of The, the, Tho, tho, Thy and thy. The result will not contain words like ethic or than.

If the user has indicated that the overall setting for the query is to match case-insensitively, the regex() function will also be case-insensitive.

The regular expression variant to be used will be Unix-style regular expressions.

· Combinations of a part-of-speech tags and a word are used to search for a

combination of a word and a PoS tag. It is not possible to search for the

combination of a word and an SGML tag (see below), or for the combination of

an SGML tag and a PoS tag. It is possible to search for a PoS tag only - i.e., a

PoS tag corresponding to an arbitrary word.

PoS searches consist of a word, a PoS operator and a PoS tag.

Instead of a word one can also use one of the alternatives listed above (wildcards, lists of alternative words, functions)

 The PoS operators are:

· and

The and operator indicates that the second operand should also match on the same position in the corpus as the first operand. A typical application of the and operator would be a word with a certain PoS tag.

The and operator specifies that the word or words to the left of the operator should be below a <W> SGML tag whose attribute matches one of the PoS tags that are to the right of the operator.

· and not

The and not operator inverts the effect of the and operator: if the and operator would match, the and not operator will fail, and vice versa.

A PoS tag is a morphosyntactic tag as defined for the Parole corpus. Like a word, a PoS tag can be:

· a sequence of characters that together constitute the start of a PoS tag.

· a wildcard that will match the start of a PoS tag (wildcards for PoS tags have the same notation as those for words)

· a list of alternative tags (also using the same notation as for words)

Matching behaviour for PoS tags will be different than that of words: where a word (or word wildcard) must match entire words in the corpus, PoS tags (or PoS wildcards) only need to match the start of PoS tags in the corpus. This definition was done for convenience, because the Parole tags are to a large extent hierarchically structured with the leftmost character being most significant. Thus, the user can ask for a PoS V (for verb), without having to worry about any other characters that may follow.

· SGML tag

If the corpus supports SGML tags, they can be queried. SGML tags can be expressed as:

· a literal string

A tag that complies with SGML conventions

· a wildcard

In SGML tags, wildcards are only allowed in the attribute values, not in tag names or attribute names.

If any attributes are given within an SGML tag, the order in which they are given is irrelevant for the match. An SGML tag in the corpus that has more attributes than specified in the query expression will match nevertheless.

All matching is case sensitive, unless a global property of the query is changed. This property can be changed within the user interface and will be passed to the server as one of the parameters of the query context as described in section 2.1.

· multiple-word expression

Multiple-word expressions are combinations of the single-word expressions defined above.

· juxtaposition

Two single-word expressions next to each other in the expression specify that a match should be found in the corpus where these words (tags, etc.) are adjacent. Words are adjacent if the first word is immediately to the left of the second word, where any intervening tags are ignored (but intervening punctuation is not ignored).

· span

The span operator indicates that two multiple-word expressions should occur within a given distance from each other. The span operator can specify the size of the distance and whether the expressions should occur in a left-to-right order or in any order.

If SGML tags are used among the multiple-word expressions, there will be no attempt to make sure that an open SGML tag and a closing tag belong to each other. If matching tags are required in the expression, refer to the section about hierarchy expressions (below).

· Hierarchy expression

Given the fact that many corpus texts to be supported in ELAN are heavily tagged with the TEI tagging system, the CQL provides a means to combine a search for words with a search for the hierarchical structure of these documents. For instance, one may search for a word that is below a TEI <HEAD> tag. Users may formulate their searches in terms of words and tags, but apart from that, they may also want to express that some hierarchical relation between the tags should exist.

Hierarchy expressions find an important application in the area of header queries. For example, the user may want to select documents published in 1995 by searching for a <DATE> tag that is below a <PUBLICATIONSTMT> tag, where the string 1995 is found within the domain governed by the <DATE> tag.

Due to conceptual differences, the Leiden server will have restrictions for text queries that search for word combinations that cross the boundaries of a phrase (e.g., a paragraph) or the header.

2.3 Query syntax

The full syntax of query expressions is described in appendix B.

In this paragraph, we will provide the actual notation for the features that were discussed in section 2.2.

Between words and operators, all whitespace (blanks, spaces, tabs) is ignored.

· single-word expression

Single-word expressions are word expressions (including part-of-speech tags) and

SGML tags. PoS tags can only occur in combination with words (or with the * wildcard, which stands for any word)

· word expression

A word expression is a literal word, a wildcard, a list of alternative words or a function that represents such a list of words.

· word

· literal word

for CQL purposes, a word is defined as a sequence of non-blank characters, with the exception of the following special characters:

&

means and (see below)

 ~&

 means and not (see below).

 |

 means or (see below)

 :

 part of span operator

 < and >

 delimit SGML tags

 (and)

 mark functions; also reserved for future use (hierarchy

 expressions)

 " and ' ¢1.2¢

 used for quoted words and quoted function parameters

 (see below)

 ^

 Reserved for future use (in hierarchy expressions)

Searching character entities, like é for é, is not supported. Instead, all characters should be entered in their Unicode (ISO 10646) re-presentation(wysiwyg (what you see is what you get): users need not bother with character entities, they only work with real printable character). Unicode characters will match the corresponding character entities in the corpus data. The user interface will somehow have to provide a facility for easily entering special characters.

Examples of literal words:

· cat

· dog

· élan

¢1.2¢ Note that the original CQL definition had no facility to enter a word between single or double quotes. Quotes were mainly introduced in order to make it easier to enter special regular expression characters in the regex() function. Other uses of quoted strings are their for reasons of orthogonality.

· wildcard

The following wildcard characters are also special, but may be part of a word, where they have a special interpretation:

_ (underscore) matches an arbitrary character

* matches zero or more arbitrary characters. An * by itself means: any word.

\ makes the following character not-special, eg. \&, _ or \\.

Examples of wildcards:

· * any word

· un* words starting with un

· *able words ending in able

· un*ily words starting with un and ending in ily

· AT\&T The AT&T company

· quoted words ¢1.2¢
If a literal word or wildcard contains many special characters, it is more convenient to enter them within quotes. Within quotes, all special characters mentioned above (under literal word) become not-special. However, the wildcard characters (_, * and \, see above) keep their wildcard interpretation.

The user may use single quotes as well as double quotes - the only requirement is that the start and the end of the string have the same quote. Within double quoted strings, single quotes can be freely entered; likewise, a single quoted string may contain double quotes. For a detailed discussion, see Appendix C.

 Examples of quoted words and wildcards:

· "I'm"

 same as I\'m

· '2.5"'

 2.5 inch; same as 2.5\"

· "AT&T"

 same as AT\&T

· I'*

 Words starting with I', same as I\'*

· '***-hotel'

same as ***-hotel - probably not a hotel where you want to go with four

little children

· '\''

 "\""

 even the absurd may be entered

· list of alternative words

A list of alternative words consists of literal words, quoted words ¢1.2¢ and/or wildcards, separated by a vertical bar character |.

Examples of alternatives:

· house | houses

· *ity | *ness

· function

A function consists of a name followed by a number of parameters. The parameters are given between round parenthesis and are separated by commas. The name of the function is a sequence of unaccented letters in the ascii range defined by a..z and A..Z. The parentheses should follow the name without intervening whitespace. Function names and parameters are case sensitive. Function parameters are made of any characters, except whitespace, commas and round parentheses. If necessary, these should be escaped with a back slash \. ¢1.2¢ Alternatively, and perhaps more conveniently, function parameters may be enclosed within quotes. In that case, the same rules apply as for quoted words, with the difference that functions define their own interpretation of parameters (e.g., caseless("wh*") matches all words starting with wh, Wh, WH, wH, while regex("wh*") will match words like w, wh, whh, and so on). See Appendix C for a description of the interpretation of function arguments.

 Examples of functions:

· flex(house)

This would (perhaps, depending on the corpus) be equivalent to the list house | houses. Note that a server need not necessarily have a flex() function; depending on the language, a server may offer different variants of flex() in order to deal with language-specific phenomena.

· regex("[aeiouy]+")

 This would be equivalent to the list of words that consist only of vowels. Note that regex([aeiouy]+) is allowed as well, since none of the characters is special.

· caseless(house)

 This would (perhaps, depending on the corpus) be equivalent to the list of all lowercase and uppercase variants of the word house, e.g. house |House |HOUSE.

· regex("koning(in)?")

 Matches the Dutch words koning (king) and koningin (queen). Note that you can't write this as regex(koning\(in\)?) (as this would match the 'words' koning(in and koning(in) - note: parentheses are correct!

· combination of a word and a part-of-speech tag

· part-of-speech operator

 The PoS operators are:

· &

 for the and operator

· ~&

 for the and not operator

 Examples of the use of PoS operators:

· walk & V

 The word walk with a PoS tag that starts with V (verb)

· & N

 Any noun

· flex(house) & N

 All inflected forms of the stem house that have a PoS tag starting with

 N (note: the flex() function is example-only)

· part-of-speech tag

 A PoS tag obeys to the same rules as a word. For convenience, a PoS tag is implicitly extended with a * wildcard character. This was done for convenience, so that the user can enter walk & N if the PoS tag for walk really is something like Ncfs--.

Instead of a PoS tag, one may also use:

· a wildcard

Wildcard characters in PoS tags obey the same rules as those for words.

· a quoted word ¢1.2¢
 See above

· a list of alternative PoS tags

A list of alternaive PoS tags has the same format as a list of alternative words.

Examples of somewhat elaborate use of PoS tags:

· dictionary & N_[-m*][sp]

 The word dictionary with a tag N, followed by any character, etc,

· & A | R

 Any word with a PoS tag starting with A or R

· SGML tag

 An SGML tag is enclosed within angle brackets < and >. The normal SGML notation applies, so, for instance, a slash / following the < indicates a closing tag.

Within attribute values, the wildcard characters _ * and \ have the same interpretation as within words. Wildcard characters are not allowed within element or attribute names.

· multiple-word expression

Multiple-word expressions are combinations of the single-word expressions defined above.

· juxtaposition

Two single-word expressions can be combined by putting them next to each other, with intervening whitespace.

 Examples of juxtaposition:

· central heating

· *&A *&A *&N

two adjectives followed by a noun

· span

The span operator will match the single-word or juxtapositional expressions that surround it. The syntax of the query language forbids more than one span operator in an expression. This was decided in order to prevent a combinatorial explosion when translating the ELAN Common Query Language to the local format.

A span operator consists of two numbers separated by a colon :. The span operator

operates on two sequences of one or more words - one sequence to the left (SL) and one

sequence to the right (SR). The numbers in the span operator define the distance between SL and SR in words. The distance between two words is defined as follows: if all words in a text are numbered, the distance of two words is the number of the rightmost word minus the number of the leftmost word. This implies that two adjacent words have a distance of 1 and that a distance of 0 is not possible between two words.

· the first number of the span operator defines the distance between SL and

SR if SR is positioned to the left of SL

· the second number defines the distance between SL and SR if SR is

positioned to the right of SL

As an example, the query draws attention is identical to the query draws 0:1 attention.

When counting intervening words, SGML tags are disregarded; punctuation is counted as words.

Note: the exact definition of word and punctuation will be defined by the tokenization strategy of each Elan server - this implies that there may be some variation between servers.

Examples of a span:

· draws 1:3 attention

would match:

· draws attention

· draws my attention

· draws his sister's attention

· attention draws

but not:

· draws more than my attention (the distance between draws and

attention is 4, not 3)

· attention and draws (distance is 2, not 1)

· Hierarchy expression

During the development of the CQL, all partners agreed about the features of the CQL. Also, notational issues were for the largest part agreed upon. However, a consensus about the syntaxis of hierarchy expressions has not been reached. Two notations have been proposed, one by Leiden and one by Birmingham. Rather than discussing the two approaches in detail, we will try to show the difference by means of a number of relevant examples. A final choice still has to be made, where, among others, aspects like notational comfort will have to be taken into account.

Description
Leiden notation
Birmingham notation

The name Lubbers within a <HEAD> tag
<HEAD>(Lubbers)
Lubbers within(HEAD)

The word premier followed by Lubbers within a <HEAD> tag
<HEAD>(premier Lubbers)
premier Lubbers within(HEAD)

Searching for an italic word between other words, e.g. "at the bank"

at <HI rend=IT>(the) bank
at (the within(HI,rend=IT)) bank

Looking for certain question-answer

patterns: a sentence that contains a ?, followed by a second sentence with the word yes, followed by a third sentence that also contains a ?

<S>(? ^)

<S>(yes)

<S>(? ^)

Note: ^ anchors to the end

? within(S)

(</S> within(S) yes)

? within(S)

Header query: select all freely available documents with source date 1992

<PUBLICATIONSTMT>

(

<AVAILABILITY STATUS=FREE>

)

<SOURCEDESC>

 (

 <DATE>(1992)

)

(

<AVAILABILITY STATUS=FREE>

within(PUBLICATIONSTMT)

) within(TEIHEADER)

(

1992

within(DATE)

within(SOURCEDESC)

)

3 Processing CQL queries

3.1 Text queries and header queries - what they do and how they cooperate

Queries are applied to a set of corpora or subcorpora available on one or more ELAN servers. The user defines this set by selecting from a list of available corpora. This list is composed from the corpora and subcorpora available at all ELAN servers for which the user is authorized.

For some applications, users may want to further refine the selection made from the standard list. For instance, the granularity of the list may allow selection of newspapers published in a given year, but the user wants to limit his domain to all articles written on fridays (perhaps because at that day papers always have articles from a certain category).

In order to do so, the user can query the TEI header of the various documents in the selected corpus -this is done by so-called header queries. If a header matches the user's query, the document to which the header belongs is included in the current subcorpus selection. Of course, documents of headers that don't match are excluded.

It will be clear that the effect of header queries and text queries is different:

· header queries select documents

· text queries select a context - say, a concordance line - in the corpus

Nevertheless, the query language for both queries is identical. This is because both header and content are made up with SGML tags. Of course, the header query facility will not be available for documents that do not have a header. Likewise, text queries on documents without SGML markup will not be able to specify SGML tags, PoS tags (which are represented as SGML tags) and hierarchy expressions.

3.2 Glue

A full description of context in which text queries and header queries are transmitted to an ELAN server (which may broadcast edited copies of them to other ELAN servers) is outside the scope of this document. Nevertheless, in order to obtain an understanding on how an ELAN server will process a query, a few words need to be said about it.

The ELAN user interface will wrap the user's text query (and the optional header query) in an XML document - this is transparent to the user, it's just part of the protocol by which the client (user interface) and the server talk to each other. This document will also contain other information - for details, please refer to section 2.1.

Part of the entries in the XML document is the kind of operation that is to be performed - type of the query in section 2.1. The following types have currently been envisaged:

· output a set of concordance lines (context size will also be specified in XML terms).

The format of the output will be an XML document that the user interface understands sothat it can do formatting and highlighting in the user interface.

· output a table with statistical information (type of statistical test and parameters will

also be supplied). This table, formatted as an XML document, will be formatted by the user interface

· output larger context given a certain id (the id corresponds to a position in the
corpus)

· output a list of words matching a given regular expression

· output the frequency of a given word, also given a certain (sub)corpus selection

Part of the protocol will originate from the server instead of from the user interface - for instance, if a corpus selection spans corpora that are distributed over several servers, one server will be responsible for merging the results coming from other servers. As another example, in order to do statistical computations, the responsible server may need to know the frequency of a word and ask that to the appropriate server.

The surrounding protocol has not yet been fully established. For example, the client may request that certain concordance lines are removed from the result set (filtering). A user may want to do that once it becomes apparent that a query contains several easily identifiable examples that are beside the point and would disturb statistics. Filtering the output may be more convenient that rephrasing the query.

Issues like this are part of the surrounding protocol and not part of the CQL proper.

Annex 5.4

TRACTOR User Agreement (draft)

Responsible: Ann Lawson, Mannheim, Germany (MAN)

TELRI Research Archive of Computational Tools and Resources

[image: image1.png]
TRACTOR User Community

c/o Institut für deutsche Sprache, TELRI, R5, 6-13, D-68161 Mannheim, Germany

TRACTOR Resources User Agreement

between

the TELRI Association

and

User: __

User's research Group (for institutional and industrial TELRI Association members only):

The TELRI (Trans-European Language Resource Infrastructure) Association agrees, on receipt of this signed agreement, to make the archived TRACTOR resources available to the user listed above (hereafter referred to as "User").

These resources are being distributed on behalf of the TELRI-II Concerted Action, which produced and collected the resources with funding from the European Union.

Under this agreement, User will receive a machine-readable copy of the resources:

· on CD-ROM _____

· by FTP_____

· other_____

 (tick as appropriate)

User agrees to use the material received under this agreement for research purposes only. User further agrees not to re-distribute the material to others outside of User's research group, and agrees to inform all members of User's research group who have access to the material of the terms of this agreement, and to ensure their compliance with them. Copies of this material may be made for back-up purposes, or for the purposes of making the data available to members of the User's research group, but User shall ensure that a copy of this agreement is included in all such copies.

User acknowledges that some of the material is subject to copyright (and other) restrictions, and that violations of such restrictions may result in legal liability. User agrees to refrain from violating the restrictions, and to notify all associates who access the material of the restrictions. The explicit permission of the copyright owner must be sought for any further redistribution or transmission. TELRI-II and TRACTOR give no warranties and makes no representation that the material will be suitable for any particular purpose, accepts no responsibility for any limitations or errors in the material, and accepts no liability for any damages or losses which may arise from User's use of the material.

In the event of copyright permission being retracted by a resource provider, this will be notified to all TUC members via the e-mail list. User hereby agrees to refrain from the use of all such retracted material immediately on such notification, and to delete all copies of the resources.

User must contact the TELRI partner responsible for providing the data if they seek to use material for purposes other than academic research, or in any cases of doubt. User may contact the TELRI Association if there is a question, but the TELRI Association accepts no liability for potential breaches. Copyright in the formatting and organisation of the material above and beyond that originally supplied to the TELRI-II is held by the TELRI-II.

(Signed by User) ___________________________________ Date ___________________________

Address:___

email

Annex 5.4

TRACTOR User Community Membership Application Form

Responsible: Ann Lawson, Mannheim, Germany (MAN)

 TELRI Research Archive of Computational Tools and Resources

[image: image2.png]
TRACTOR User Community

c/o Institut für deutsche Sprache, TELRI, R5, 6-13, D-68161 Mannheim, Germany

Membership Application

for the TRACTOR User Community

Name:

Title:

Address:

Tel:

Fax:

e-mail:

I hereby apply for membership in the TRACTOR User Community as:

personal member: ____

institutional member: ____

(tick as appropriate)

(For institutional members only) Name and address of institute:

Membership is subject to approval by the Executive Board of the Association and will become effective only upon transfer of the membership fee (EURO 20 per annum for CEE/NIS members, EURO 50 per annum for all other members) to the following account:

TELRI Association e.V.

Dresdner Bank Mannheim

Account Number: 6780.817.00

Sort Code: 670 800 50

Signature:

Date and place of signature:

Annex 5.5
WP 4.1. Resources questionnaire

Responsible: Andrejs Spektors, Riga, Latvia (RIG)

sent to all TELRI partners

1. Organisation name, country

2. Number of employees working in field of language engineering

3. Do you have any tagging tools (Y/N)?

4. Are you using general SGML taggers (Y/N)?

 - which mark-up standard do you use (SGML, XML, other)

 - is it language specific

 - please give short description of tagging levels

 - which computer platform do you use

5. Are you using general morphological taggers (Y/N)?

 - which mark-up standard do you use

· is it language specific

· - please give short description of tagging levels

· - which computer platform do you use

6. Are you using general syntactic taggers (Y/N)?

· - which mark-up standard do you use

· - is it language specific

· - please give short description of tagging levels

· - which computer platform do you use

7. Are you using general semantic taggers (Y/N)?

· - which mark-up standard do you use

· - is it language specific

· - please give short description of tagging levels

· - which computer platform do you use

8. Do you have tools for information extraction?

· If yes, please specify.

9. Do you have concordance tools?

· If yes, please specify.

10. Do you have tools for aligning parallel texts?

· If yes, please specify.

11. Do you have tools for multilingual terminology extraction?

· If yes, please specify.

12. Do you have tools to convert from one format to another?

· If yes, please specify.

13. Do you have other tools for linguistic research?

· Please specify.

14. Have you documented your tools?

· - taggers (No, national language, English, other)

· - information extraction tools (No, national language, English, other)

· - concordance tools (No, national language, English, other)

· - aligment tools (No, national language, English, other)

· - terminology extraction tools (No, national language, English, other)

· - other tools (No, national language, English, other)

15. On which conditions are these tools available for the linguistic society?

· - for test and documentation purposes of TELRI Work Package 4 (WP4)

· - TELRI group members

· - available on Internet by special regulations

Annex 5.6

WP 4.1. Results of questionnaire

Responsible: Inguna Greitane, Riga, Latvia (RIG)

Name of organization
Abbreviation

Do you have any tagging tools?

1.
 Institute of Bulgarian Language,Bulgaria
 SOF1
5

Y

2.
Center for Turkish Language and Speech Processing Bilkent University Ankara, Turkey
 ANK
~8
Y

3.
 Jozef Stefan Institute, Slovenia
LJU 1
4
Y

4.
 Institute of Czech National Corpus Charles University Faculty of Philosophy The Czech Republic
PRA 1
~8
Y

5.
 Minsk State Linguistic University, Belarus
MIN
25
Y

6.
 RACAI – Romanian Academy of Sciences, Romania
BUC
3
Y

7.
 Tuscan Word Centre, Italy
TWC
2
N

8.
Department of Corpus Linguistics Research, Institute for Linguistics, Hungarian Academy of Sciences
BUD
6
Y

9.
Center of Computational Linguistics at Vytautas Magnus University, Lithuania
KAU
6 part time
Y

10.
L. Stur Linguistics Institute (Jazykovedny ustav Ludovita Stura), Slovak Academy of Sciences, Slovakia
BRA 2
1 ½
Y

11.
 Comenius University , Faculty of Education Computational Linguistics Lab. Bratislava, Slovakia
BRA 1
3
Y

12.
Institute of Slovenian Language, Slovene Academy of Science and Arts, Slovenia
LJU 2
8
Y

13.
LORIA - Equipe Langue et Dialogue, University of Nancy
 NAN
30
Y

14.
Gothenburg University, Department of Swedish, Sweden
 GOT
10
Y

15.
Institut fur Deutsche Sprache, Germany
 MAN
~ 20
we have access to tagging tools, but nothing designed here

16.
University of Tartu, Estonia
 TAR
8 full staff+master, PhD students

Y

17.
Russian Academy of Sciences
MOS

in-house means to lemmatize wordforms and ascribe grammatical information

18.
 Latvia; The Laboratory of Artificial Intelligence; University of Latvia
 RIG
~ 8
Y

19.
University of Birmingham
BIR

20.
University “A.I.Cuza” Iasi
IAS
6
Y

21.
Institute for Dutch Lexicology
LEI
2
Y

22.
Instituto di Linguistica Computazionale
PIS

23.
Adam Mickiewicz University
POZ

24.
Faculty of Maths and Physics, Charles University
PRA 2

25.
Samarkand State Institute of Foreign Languages
SAM

26.
Albanian Academy of Sciences
AL

27.
Linguistic Modelling Laboratory
SOF2

TOTAL

20
Y – 19

Distribution of linguistic tools

[image: image3.wmf]19 17

10

15

2

1

7

16

9

1

10

0

2

4

6

8

10

12

14

16

18

SGML taggers

Morphological

taggers

Syntactic taggers

Semantic taggers

Information

extraction tools

Concordance tools

Aligning tools

Multilingual

terminology

extraction

Tools for conversion

SGML taggers

Mark-up standard
Is it language specific
Computer platform

LJU 1
SGML
partially
Unix

PRA 1
SGML
N
Linux/Intel, Solaris/Sparc

BUD
SGML
N
Linux, Solaris

LJU 2
other
Y
PC, Windows 98/Windows NT

NAN
SGML (TEI), XML
N
Mac, Pc, Sun

GOT
SGML, SGML-S, XML
both language specific and general
Sun

TAR
SGML
Y
Win, Dos, SOLARIS

RIG
 SGML
N
Win

LEI
TEI/CES: PAROLE DTD,
XML
N
Sun UltraSparc with Solaris 2.7, Windows NT Workstation 4.0

IAS
a simplified SGML (close to XML)
N
PC, Windows 98 or NT

Short description of tagging levels

LJU 1 - SGML parsing, tokenisation, segmentation, alignment
PRA 1 - External linguistics tags (about text source, author etc.)
 Internal linguistic tags - strutural from document to word level

POS tags, with automatic disambiguation
LJU 2 - up to sentence level (CES compatible)

NAN – always paragraphs, as often as possible sentences or segments
GOT - for texts: paragraph, for lexical data: various lexical information categories
TAR – sentence, lexeme

RIG - External linguistics tags (about author, text source etc.)

LEI – paragraph level and higher
IAS – discourse (referring expressions, coreferences, discourse units, discourse structure)

Morphological taggers

Mark-up standard
Is it language specific
Computer platform

SOF1
own, based on the system

"PLAIN" (P. Helwig)
Y
PC, Windows

ANK
own
Y
 Sun Sparc, SOLARIS OS

LJU 1
MULTEXT-East
N
Unix

PRA 1

Y
Linux/Intel, Solaris/Sparc

BUC
EAGLES & MULTEXT compilant, 615 tags
N
Unix (SUN, PC)

BUD
CES
N
Linux, Solaris

KAU

Y

BRA 2
own
Y
PC

BRA 1
own
Y
Ms-Dos

LJU 2
own
Y
PC, Windows 98/Windows NT

NAN
not available tool

GOT
Multext-Parole
Y
Sun

TAR
FiloSoft, Multext-East, CG
Y/N
Win, Dos, SOLARIS

RIG
MULTEXT-EAST
Y
 Win

LEI
in progress: PAROLE markup

Sun UltraSparc with Solaris 2.7, Windows NT Workstation 4.0

 IAS
 the same as BUC

Short description of tagging levels

SOF1 – full inflection paradigm
ANK -All overt and covert inflectional and derivational information
is coded as a sequence of morphosyntactic features
LJU 1 - surface morphosyntax (inflectional features)
PRA 1 - External linguistics tags (about text source, author etc.)
 Internal linguistic tags - strutural from document to word level
 POS tags, with automatic disambiguation
BUC - The tagging is done in two steps (tiered-tagging) and using combined LM
 classifiers. (D. Tufis "Tiered Tagging and Combined Language Models Classifiers",
 TSD99, Pilsen, Czech Republic)
BUD - down to the level of disambiguated morphosyntactic information on word forms
KAU – morphological analyser(http://donelaitis.vdu.lt)
BRA 2 – lemmatisation, POS
BRA 1 - Lemma, POS category and subcategory, inflection paradigm
LJU 2 - 11 wordclasses, 72 subclasses, 4.797 POS-tags, described in: http://www.ff.uni-lj.si/hp/pj/bos/POS_tagging.html
GOT – wordclass & inflection
TAR - lemmatizing, POS, inflectional categories, compounding & derivation
RIG - all morphological features

LEI – lemma and PAROLE POS tagset

Syntactic taggers

Mark-up standard
Is it language specific
Tagging levels
Computer platform

GOT
own
Y
clause level + various
SUN

TAR
Constraint Grammar
Y/ N

Win, DOS, SOLARIS

Semantic taggers

Mark-up standard
Is it language specific
Tagging levels
Computer platform

GOT
own
Y
various
SUN

Concordance tools

 SOF1
A Linguist's Workbench

 ANK
Y

LJU 1
CQP by IMS and WWW interface: http://nl2.ijs.si/

PRA 1
Y

MIN
System MICROCONCORD for English language

BUC
Oliver Mason's Quick & CUE

TWC
CUE

BUD
WordSmith

KAU
We have one for our Lithuanian corpus, produced by Oliver Mason (Birmingham un-ty) in Java (see Internet address, given above) plus a tool called WordSmith Tools, produced by Mike Scott at Liverpool university

BRA 2
WordSmith, WordCruncher

BRA 1
WordSmith

LJU 2
EVA-CGI concordancer, http://www.uni-lj.si/~ffjakopin/eva-cgi.html

NAN
Y

GOT
a fast home-made product

MAN
CUE, Wordsmith, Sara and the tools of the COSMAS toolbox here at IDS, but nothing of "our own"

TAR
Unix commands

LEI
as a component of corpus exploitation software

IAS
A program that gives occurences of different word forms in a corpus. It is under development multiple filterring of the selections found. The final goal is to arrive at

a technique that helps to build semantic frames of words, based on a corpus.

Information extraction tools

 SOF1
from treebanks

 ANK
Basic Base Noun Phrase and Named Entity extractors

PRA 1
IMS-CWB by University of Stuttgart

MIN
"LIBRETTO" System of automatic abstracting and annotating of text for English and Russian languages

KAU
we have one for our Lithuanian corpus, produced by Oliver Mason (Birmingham un-ty) in Java (see Internet address, given above) plus a tool called WordSmith Tools, produced by Mike Scott at Liverpool university

 GOT
GATE/LaSie (Sheffield)

 MAN
Y, but not designed ourselves

Aligning tools for parallel texts

 SOF1
A Linguist's Workbench

LJU 1
Vanilla aligner by D.Ridings and P.Danielson

BUC
Church & Gale Aligner, Multext Aligner

TWC
vanill, paraconc, other

BUD
Multext Aligner, Vanilla aligner, CRIN Aligner

 NAN
Y

 GOT
Vanilla aligner (Internet version for PC) (Daniel Ridings, Pernilla Danielsson)

 MAN
We have tools from Laurent Romary's site in Nancy and various scripts etc designed here for specific tasks

 TAR
MTAlign

Tools for multilingual terminology extraction

LJU 1 - Twente tools (freely available from http://www.cs.utwente.nl/~hiemstra/)

Tools for conversion from one format to another

 LJU 1
Perl, OmnimarkLE

PRA 1
Small utilities written in Flex or right in C.

 BUC
using Perl scripts

 BUD
task-specific Perl programs

 BRA 2
we make ad hoc programs

 NAN
JADE: XML (HTML

GOT
various

MAN
We have various converters (rtf to HTML/SGML) and the like.

TAR
Unix scripts ad hoc program

LEI
tools to convert proprietary formats into TEI format

Other tools for linguistic research

ANK
Corpus annotation tools

LJU 1
Xerox Finite State Library, DATR

MIN
System for read operation for 40 languages (Fine Reader 4.0.)

System for English speech understanding and English speech synthesizing (Voice Type Simply Speaking)

Different Encyclopedies of English and Russian

System for creation of frequency dictionaries

BUC
EGLU-integrated platform for unification based language processing (parser,generator, translation); several NL-generators, dcitionary tools

BUD
morphological analyzer for Hungarian

KAU
Only those which are included in WordSmith tools

BRA 2
 Program package for Dictionary Text Validation

BRA 1
 WinAlign – sentence aligner (part of the TRADOS translation tools suite)

LJU 2
EVA, http://www.uni-lj.si/~ffjakopin/hp_eng.html#eva

GOT
Various tools for vocabulary extraction ("new words"), various tools for extracting database information

MAN
made by other people

TAR
Text corpora, Semantic lexicons (EUROWORDNET)

TWC
Wordsmith etc.

RIG
programms for morphemic analysis, programms for statistical analysis

IAS
Tools that compute veins on discourse trees (see Cristea et. al,

1998 ACL/Coling , Cristea et. al, ACL Workshop on the Relation

Between Structure And Reference, 1999), that compute statistics

of coreferences in correlation with the discourse structure, an

algorithm for anaphora resolution, a program that interactively

builds the discourse structure of a text (all experimental).

Documentation

1. Taggers

BUC
There are several papers in English on the subject.

KAU
national

LJU 2
English

TAR
Estonian and English

LEI
internal documentation only

2. Information extraction tools

SOF1
national language

MIN
Russian

3. Concordance tools

SOF1
national language

LJU 2
English

MIN
Russian

LEI
national language, English

4. Aligment tools

SOF1 – national language

5. Other tools

LJU 2
English

MIN
English and Russian

ANK
morphological analyser (E)

6. Other answers

LJU 1
Since most tools were not developed by us, there is not that much to document. But we have documented the language specific parts. Most documentation is in English, either in publications on the WWW

PRA 1
In most cases, there are only for internal using or we free or research free software tools with their own documentation

BUC
other tools – English, Romanian (more extensive 200pages)

TWC
WORDSMITH etc.

BUD
Public domain tools used are documented, morphological analyzer is not.

GOT
Not well enough. For aligment tools see Internet version of Vanilla aligner.

MAN
No, since they're not "ours"

TAR
http://www.ee/eks/ready/download.html, http://www.filosoft.ee/index_en.html,

http://www.cl.ut.ee/index_en.html

RIG
most of tools are described in papers of our students

IAS
documentation is under development

On which conditions are these tools available for the linguistic society?

1. For test and documentation purposes of TELRI Work Package 4 (WP4)

SOF1
Y

MIN
free

BRA 2
We can offer only the package for Dictionary Text Validation. The programs are not documented and they are for PC platform only.

BUC
Y

TAR
no problems

IAS
Y

2. For TELRI group members

MIN
free

BUC
Y

BRA 2
Y

3. Available on Internet by special regulations

BUC
Y

4. Other answers

ANK
Some are free, some require license fee.

BRA 2
N

TAR
http://www.ee/eks/ready/download.html,

http://www.filosoft.ee/index_en.html

LJU 1
All of the above

PRA 1
We don't have own tools for TELRI usage only data.

TWC
CUE is freely available for academic users. The precise version of it, and the best way of accessing it, both vary from time to time.

BUD
All tools are freely available for research purposes, except for the morphological analyzer, which is only available on special agreement

KAU
our corpus and tagger is avalable on Internet free of charge

BRA 1
N

LJU 2
http://www.uni-lj.si/~ffjakopin/eva-cgi.html

NAN
All the information about availability and documentation of the tools used in the team can be found at the following URLs: http://www.loria.fr/equipes/led/ (then click on "Logiciels et produits") http://www.loria.fr/projets/Silfide/Index.html (then click on "Information")

GOT
The Vanilla aligner is available for research purposes on Internet. Other(general) tools will be available by agreement for test and documentation purposes of TELRI Work Package 4

MAN
The original designers/producers would have to be contacted personally.

LEI
to be discussed with director INL

Annex 5.7

Report on the current state of PLATO corpus work
Responsible: Ann Lawson, Mannheim, Germany (MAN)

current state
The parallel corpus of Plato’s „Republic“, which was collected encoded and aligned initially during the first TELRI project, has proved to be one of the most successful concrete outcomes of the project. To date around copies of the CD-ROM have been distributed, and more requests are received in MAN on a regular basis. CD-ROMs have been demonstrated and made available at numerous conferences and events since publication. A considerable amount of research has been undertaken using the resources provided. During the last semester it was decided to make the CD-ROM available without cost in order to ensure even wider dispersion.

It is planned to release an improved version of the CD-ROM with additional language versions, improved alignments and further research findings later in the project. In the meantime, the current state of work will be accessible in full to project partners and on a sampled basis to all others. An information page will be made available to assist potential text suppliers as regards encoding, text delivery and so on. Further encoding and linguistic analysis of some of the versions has been undertaken in addition to the standard mark-up. The Romanian text has, for example, been POS tagged.

In addition, all the current texts are being converted into XML with standardised 8-bit encoding of characters. Work on the minimal header and style sheets for the Plato corpus will be synchronised between MAN and NAN in the coming months.

future work
Several more language versions have been commissioned over recent months. These will be validated, the encoding will be improved if necessary and aligned.

The „base“ aligned versions of English, French and German will be manually validated and corrected as necessary. The project partners will then be asked to check the alignment of their language version with one of those versions. It has been decided to make a small amount of money available for such support. The on-going work and full aligned versions will be made available on the TELRI private website, while samples will be available on the public site.

Part Two

Cost Statement

Cost Statement Summary (National Currency/ECU)

Project Title: TELRI II

Contract No.: PL977085 Name of Contractor: Institut fuer Deutsche Sprache, Mannheim
(MAN)
Currency in which accounts kept:
DM
 Exchange rate used for conversion to ECU
: 1,95583 DM

for the period from 1999-01-01_ to 1999-06-30 (reporting period no. 1) for the Contractor

Categories of Cost

Amount for the period

National Currency

 ECU

Direct Costs

1.
Personnel Costs

2.
Networking Costs

3.
Significant Specific Task Costs

4.
Other Costs

 18,705.17

 10,680.37

 17,852.38

 -
 9,563.80

 5,460.79

 9,127.78

 -

 Subtotal of direct costs
 47,237.92
 24,152.37

Indirect Costs

5.
Overheads (max. 20% of Direct Costs w/o above No. 3)

Adjustments

6.
Adjustments to costs previously reported

VAT

Total:

 5,877.11

 -

 -

 53,115.03

 3,004.92

 -

 -

 27,157.29

100 % contribution of Commission:
 53,115.03
 27,157.29

Contractor's Certificate

We certify that

‑ the above costs are derived from the resources employed which were necessary for the work under the contract,

‑ such costs have been incurred and fall within the definition of allowable costs specified in the contract,

‑ any necessary permissions of the Commission have been obtained and

‑ full supporting documentation to justify the costs is available for audit.

We certify that any necessary adjustments, for any reason, to costs reported in previous cost statements have been incorporated in the above statement.

Date:
1999-08-17

 Date: 1999-08-17

Name of Project Manager: Dr. TEUBERT, Wolfgang
 Name of Financial Officer: PIROTH, Gerd
Signature of Project Manager:

 Signature of Financial Officer:

COST STATEMENT: DETAILS BY CATEGORY (National Currency)
for the period from__ 1999-01-01____to 1999-06-30_

Contract No.: PL977085 Name of Contractor/Associated Contractor: Institut fuer Deutsche Sprache (IDS)

Currency: DEM

PERSONNEL

Category

A

No. of Man Hours

B
 Hourly

Personnel Rate

 C
 Hourly

 Overhead Rate

 D
 Personnel

 Amount

 Col. (B) x (C)
 Overheads

 Amount

Col. (B) x (D)

Management staff

Technical staff

 500.5

 154.0
 37,372967

18,705.17

Subtotals
18,705.17

Total

(personnel +
overheads)
18,705.17

EQUIPMENT

Description
Date of Purchase

Cost

Depreciation period

36/60 months

% Allocation

to Project

Amount21

Total

 n/a

NETWORKING COSTS

Within Western Europe

Date
Purpose
Amount

1999-01-29 /

 1999-01-31
Mannheim: Steering Committee Meeting (Marcinkeviciene, Cermak, Sinclair, Shaikevich)
 4,573.28

1999-04-14 /

 1999-04-22
Budapest: WG 4-Meeting (Paskaleva/Tufis/Erjavec/Greitane)/ Info-Day (Lawson)
 4,725.13

Guildford: TELRI Liaison (Lawson)
 1,246.65

Date
Purpose
EC authorisation

Warsaw: Flight Cancellation Costs Teubert

 135.31

Total
10,680.37

COST STATEMENT: DETAILS BY CATEGORY (National Currency)
for the period from__ 1999-01-01____to 1999-06-30_

Contract No.: PL977085 Name of Contractor/Associated Contractor: Institut fuer Deutsche Sprache (IDS)

Currency: DEM

CONSUMABLES

Description
Amount

Total
 n/a

SIGNIFICANT SPECIFIC TASK COSTS

Name of sub-contractor
Amount

B. Hladka/A. Bohmova
 2,517.40

Kirsten Ploeger
 1,200.00

E. Zuljevic
 800.00

Michal Kren
 400.00

Jiri Havelka
 1,200.00

L. Romary
11,734.98

Total
17,852.38

OTHER SIGNIFICANT SPECIFIC Project COSTS

Description

Amount

Total
 n/a

Global costings summary

for Period Progress Report No. 1 January-June 1999

N.B.: The costs for the first semester are lower than planned due to the initial delay in setting up the TRACTOR Archive, Helpline and Service Directory. In addition, some of the bills for technical support and printing for work undertaken during this period have not yet been sent and have thus not been processed and included in this summary. They will be included in later Cost Statements. The daily rate used for all TELRI travel is EUR 75 per full day.

1. Personnel

Coordination Manager: Ann Lawson (half-time)

DEM 18.705,17

Labour total expenses

DEM 18.705,17

2. Networking Costs

Steering Committee Meeting January 1999

(Marcinkeviciene, Shaikevich, Cermak, Sinclair)

DEM 4.573,28

Budapest Info Day

(Lawson)

DEM 2.725,13

Budapest WG 4 Meeting

(Paskaleva/Tufis/Erjavec/Greitane)

DEM 2.000,00

TELRI Liaison Guildford

(Lawson)

DEM 1.246,65

Warsaw

(Teubert)

DEM 135,31

Travel and Subsistence total expenses

DEM 10.680,37

3. Significant Specific Tasks Costs

Technical Support for Newsletter/Webpage

(Hladka/Bohmova)

DEM 2.517,40

(Kirsten)

DEM 1.200,00

(Zuljevic)

DEM 800,00

Technical Support for TRACTOR Tools and Resources

(Kren)

DEM 400,00

Technical Support for Organising Joint Research

(Havelka)

DEM 1.200,00

WP 3 Technical Support for Network Realisation

DEM 11.734.98

Significant Specific Tasks Costs total expenses

DEM 17.852.38

4. Other Costs
Consumables/Contingencies:

-none-

Other Costs
total expenses

DEM 0
5. Overhead

20% of 1,2 and 4

DEM 5.877,11

Overhead total expenses

DEM 5.877,11

TOTAL

DEM 53.115,03

TOTAL

EUR 27.157,29
�For the sake of simplicity "corpus" and "subcorpus" will refer here to any set or subset of data which the user is dynamically putting together for a specific purpose.

� SXP is a compatible SAX XML validating parser. SXP has been developed by Patrice Bonhomme in the framework of the SILFIDE project.

� The software architecture has been designed, in part, in the framework of the SILFIDE project by Christophe de Saint-Rat.

� Java Servlet Development Kit, integrated within JDK 1.2

� © Sun Microsystems, Inc.

�		The exchange rate must be that specified in Article 20.1 of this Annex .

� Delete the “Contractor” or “all Associated Contractors” as appropriate. See Article 20.3 of this Annex.

� See Article 15 of this Annex .

�		See Article 16 of this Annex.

5 See Article 17 of this Annex.

�	 See Article 18 of this Annex.

�		See Article 19 of this Annex.

�		Not applicable for the first cost statement. Any adjustments, for example, to reflect actual rates instead of budgeted rates,

 must be made in subsequent statements. Details and reasons for any adjustments must be provided.

�	See Article 3.2 of the contract – applies only to any invoice or bill by a supplier exceeding 2500 ECU specific to the Project.

�		The Project Manager in direct charge of the performance of the work and the Financial Officer must sign this certificate.

�		Clearly identifiable (e.g. engineer, technician, department, cost centre, cost centre groups, etc.) to contractor's personnel records. Name individuals if identified in the contract as key personnel.

�		The personnel rate comprises the elements specified in Article 1.3.1 of Annex II.

�		Overheads principles are specified in Article 1.4 of Annex II. This column should be left blank by contractors using additional costs.

�		For allowable cost calculation see Article 1.3.2 of Annex II.

�		Percentage use of item of equipment on the Project.

�		See Article 1.3.6 of Annex II.

SEITE
40

_994096235.xls
Chart1

		SGML taggers

		Morphological taggers

		Syntactic taggers

		Semantic taggers

		Information extraction tools

		Concordance tools

		Aligning tools

		Multilingual terminology extraction

		Tools for conversion

19 17

10

15

2

1

7

16

9

1

10

Sheet1

		Taggers		19

				17

		SGML taggers		10

		Morphological taggers		15

		Syntactic taggers		2

		Semantic taggers		1

		Information extraction tools		7

		Concordance tools		16

		Aligning tools		9

		Multilingual terminology extraction		1

		Tools for conversion		10

